Anugrayani Bustamin, Andi M Rizky, Elly Warni, Intan Sari Areni, Indrabayu
{"title":"IndoWaveSentiment:用于情绪分类的印度尼西亚音频数据集。","authors":"Anugrayani Bustamin, Andi M Rizky, Elly Warni, Intan Sari Areni, Indrabayu","doi":"10.1016/j.dib.2024.111138","DOIUrl":null,"url":null,"abstract":"<p><p>Voice is a one of media for human communication and interaction. Emotions conveyed through voice, such as laughter or tears, can communicate messages more quickly than spoken or written language. In sentiment analysis, the emotional component is crucial for reflecting human perceptions and opinions. This paper introduces IndoWaveSentiment, a dataset of emotional voice recordings categorized into five classes: neutral, happy, surprised, disgusted, and disappointed. The data collection took place in a recording studio with ten actors, evenly split between men and women. Each actor repeated the same sentence in Bahasa Indonesia three times for each emotion class, and the recordings were saved in .wav format. The annotation process was manually conducted using Audacity and validated through a questionnaire-based sampling technique that supports audio data. This dataset is valuable for researchers in Signal Processing and Artificial Intelligence, aiding the development of classification models within Machine Learning.</p>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"57 ","pages":"111138"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11647155/pdf/","citationCount":"0","resultStr":"{\"title\":\"IndoWaveSentiment: Indonesian audio dataset for emotion classification.\",\"authors\":\"Anugrayani Bustamin, Andi M Rizky, Elly Warni, Intan Sari Areni, Indrabayu\",\"doi\":\"10.1016/j.dib.2024.111138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Voice is a one of media for human communication and interaction. Emotions conveyed through voice, such as laughter or tears, can communicate messages more quickly than spoken or written language. In sentiment analysis, the emotional component is crucial for reflecting human perceptions and opinions. This paper introduces IndoWaveSentiment, a dataset of emotional voice recordings categorized into five classes: neutral, happy, surprised, disgusted, and disappointed. The data collection took place in a recording studio with ten actors, evenly split between men and women. Each actor repeated the same sentence in Bahasa Indonesia three times for each emotion class, and the recordings were saved in .wav format. The annotation process was manually conducted using Audacity and validated through a questionnaire-based sampling technique that supports audio data. This dataset is valuable for researchers in Signal Processing and Artificial Intelligence, aiding the development of classification models within Machine Learning.</p>\",\"PeriodicalId\":10973,\"journal\":{\"name\":\"Data in Brief\",\"volume\":\"57 \",\"pages\":\"111138\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11647155/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data in Brief\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.dib.2024.111138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.dib.2024.111138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
IndoWaveSentiment: Indonesian audio dataset for emotion classification.
Voice is a one of media for human communication and interaction. Emotions conveyed through voice, such as laughter or tears, can communicate messages more quickly than spoken or written language. In sentiment analysis, the emotional component is crucial for reflecting human perceptions and opinions. This paper introduces IndoWaveSentiment, a dataset of emotional voice recordings categorized into five classes: neutral, happy, surprised, disgusted, and disappointed. The data collection took place in a recording studio with ten actors, evenly split between men and women. Each actor repeated the same sentence in Bahasa Indonesia three times for each emotion class, and the recordings were saved in .wav format. The annotation process was manually conducted using Audacity and validated through a questionnaire-based sampling technique that supports audio data. This dataset is valuable for researchers in Signal Processing and Artificial Intelligence, aiding the development of classification models within Machine Learning.
期刊介绍:
Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.