Yuki Itaya, Jun Tamura, Kenichi Hayashi, Kouji Yamamoto
{"title":"马修斯相关系数的渐近性质。","authors":"Yuki Itaya, Jun Tamura, Kenichi Hayashi, Kouji Yamamoto","doi":"10.1002/sim.10303","DOIUrl":null,"url":null,"abstract":"<p><p>Evaluating classifications is crucial in statistics and machine learning, as it influences decision-making across various fields, such as patient prognosis and therapy in critical conditions. The Matthews correlation coefficient (MCC), also known as the phi coefficient, is recognized as a performance metric with high reliability, offering a balanced measurement even in the presence of class imbalances. Despite its importance, there remains a notable lack of comprehensive research on the statistical inference of MCC. This deficiency often leads to studies merely validating and comparing MCC point estimates-a practice that, while common, overlooks the statistical significance and reliability of results. Addressing this research gap, our paper introduces and evaluates several methods to construct asymptotic confidence intervals for the single MCC and the differences between MCCs in paired designs. Through simulations across various scenarios, we evaluate the finite-sample behavior of these methods and compare their performances. Furthermore, through real data analysis, we illustrate the potential utility of our findings in comparing binary classifiers, highlighting the possible contributions of our research in this field.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":" ","pages":"e10303"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic Properties of Matthews Correlation Coefficient.\",\"authors\":\"Yuki Itaya, Jun Tamura, Kenichi Hayashi, Kouji Yamamoto\",\"doi\":\"10.1002/sim.10303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Evaluating classifications is crucial in statistics and machine learning, as it influences decision-making across various fields, such as patient prognosis and therapy in critical conditions. The Matthews correlation coefficient (MCC), also known as the phi coefficient, is recognized as a performance metric with high reliability, offering a balanced measurement even in the presence of class imbalances. Despite its importance, there remains a notable lack of comprehensive research on the statistical inference of MCC. This deficiency often leads to studies merely validating and comparing MCC point estimates-a practice that, while common, overlooks the statistical significance and reliability of results. Addressing this research gap, our paper introduces and evaluates several methods to construct asymptotic confidence intervals for the single MCC and the differences between MCCs in paired designs. Through simulations across various scenarios, we evaluate the finite-sample behavior of these methods and compare their performances. Furthermore, through real data analysis, we illustrate the potential utility of our findings in comparing binary classifiers, highlighting the possible contributions of our research in this field.</p>\",\"PeriodicalId\":21879,\"journal\":{\"name\":\"Statistics in Medicine\",\"volume\":\" \",\"pages\":\"e10303\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/sim.10303\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10303","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Asymptotic Properties of Matthews Correlation Coefficient.
Evaluating classifications is crucial in statistics and machine learning, as it influences decision-making across various fields, such as patient prognosis and therapy in critical conditions. The Matthews correlation coefficient (MCC), also known as the phi coefficient, is recognized as a performance metric with high reliability, offering a balanced measurement even in the presence of class imbalances. Despite its importance, there remains a notable lack of comprehensive research on the statistical inference of MCC. This deficiency often leads to studies merely validating and comparing MCC point estimates-a practice that, while common, overlooks the statistical significance and reliability of results. Addressing this research gap, our paper introduces and evaluates several methods to construct asymptotic confidence intervals for the single MCC and the differences between MCCs in paired designs. Through simulations across various scenarios, we evaluate the finite-sample behavior of these methods and compare their performances. Furthermore, through real data analysis, we illustrate the potential utility of our findings in comparing binary classifiers, highlighting the possible contributions of our research in this field.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.