{"title":"模拟秀丽隐杆线虫的生物物理细节神经元和肌肉动力学。","authors":"","doi":"10.1038/s43588-024-00740-2","DOIUrl":null,"url":null,"abstract":"We created an open-source model that simulates Caenorhabditis elegans in a closed-loop system, by integrating simulations of its brain, its physical body, and its environment. BAAIWorm replicated C. elegans locomotive behaviors, and synthetic perturbations of synaptic connections impacted neural control of movement and affected the embodied motor behavior.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 12","pages":"888-889"},"PeriodicalIF":12.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simulated C. elegans with biophysically detailed neurons and muscle dynamics\",\"authors\":\"\",\"doi\":\"10.1038/s43588-024-00740-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We created an open-source model that simulates Caenorhabditis elegans in a closed-loop system, by integrating simulations of its brain, its physical body, and its environment. BAAIWorm replicated C. elegans locomotive behaviors, and synthetic perturbations of synaptic connections impacted neural control of movement and affected the embodied motor behavior.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"4 12\",\"pages\":\"888-889\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-024-00740-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00740-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A simulated C. elegans with biophysically detailed neurons and muscle dynamics
We created an open-source model that simulates Caenorhabditis elegans in a closed-loop system, by integrating simulations of its brain, its physical body, and its environment. BAAIWorm replicated C. elegans locomotive behaviors, and synthetic perturbations of synaptic connections impacted neural control of movement and affected the embodied motor behavior.