多分辨率等几何分析-利用多补丁结构的高效自适应

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED Computers & Mathematics with Applications Pub Date : 2025-02-01 DOI:10.1016/j.camwa.2024.12.005
Stefan Takacs , Stefan Tyoler
{"title":"多分辨率等几何分析-利用多补丁结构的高效自适应","authors":"Stefan Takacs ,&nbsp;Stefan Tyoler","doi":"10.1016/j.camwa.2024.12.005","DOIUrl":null,"url":null,"abstract":"<div><div>Isogeometric Analysis (IgA) is a spline-based approach to the numerical solution of partial differential equations. The concept of IgA was designed to address two major issues. The first issue is the exact representation of domains generated from Computer-Aided Design (CAD) software. In practice, this can be realized only with multi-patch IgA, often in combination with trimming or similar techniques. The second issue is the realization of high-order discretizations (by increasing the spline degree) with a number of degrees of freedom comparable to low-order methods. High-order methods can deliver their full potential only if the solution to be approximated is sufficiently smooth; otherwise, adaptive methods are required. A zoo of local refinement strategies for splines has been developed in the last decades. Such approaches impede the utilization of recent advances that rely on tensor-product splines, e.g., matrix assembly and preconditioning. We propose a strategy for adaptive IgA that utilizes well-known approaches from the multi-patch IgA toolbox: using tensor-product splines locally, but allow for unstructured patch configurations globally. Our approach moderately increases the number of patches and utilizes different grid sizes for each patch. This allows reusing the existing code bases, recovers the convergence rates of other adaptive approaches, and increases the number of degrees of freedom only marginally. We provide an algorithm for the computation of a global basis and show that it works in any case. Additionally, we give approximation error estimates. Numerical experiments illustrate our results.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"179 ","pages":"Pages 103-125"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-resolution isogeometric analysis – efficient adaptivity utilizing the multi-patch structure\",\"authors\":\"Stefan Takacs ,&nbsp;Stefan Tyoler\",\"doi\":\"10.1016/j.camwa.2024.12.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Isogeometric Analysis (IgA) is a spline-based approach to the numerical solution of partial differential equations. The concept of IgA was designed to address two major issues. The first issue is the exact representation of domains generated from Computer-Aided Design (CAD) software. In practice, this can be realized only with multi-patch IgA, often in combination with trimming or similar techniques. The second issue is the realization of high-order discretizations (by increasing the spline degree) with a number of degrees of freedom comparable to low-order methods. High-order methods can deliver their full potential only if the solution to be approximated is sufficiently smooth; otherwise, adaptive methods are required. A zoo of local refinement strategies for splines has been developed in the last decades. Such approaches impede the utilization of recent advances that rely on tensor-product splines, e.g., matrix assembly and preconditioning. We propose a strategy for adaptive IgA that utilizes well-known approaches from the multi-patch IgA toolbox: using tensor-product splines locally, but allow for unstructured patch configurations globally. Our approach moderately increases the number of patches and utilizes different grid sizes for each patch. This allows reusing the existing code bases, recovers the convergence rates of other adaptive approaches, and increases the number of degrees of freedom only marginally. We provide an algorithm for the computation of a global basis and show that it works in any case. Additionally, we give approximation error estimates. Numerical experiments illustrate our results.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"179 \",\"pages\":\"Pages 103-125\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122124005388\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124005388","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

等距分析(IgA)是一种基于样条的偏微分方程数值解法。IgA 的概念旨在解决两个主要问题。第一个问题是精确表示计算机辅助设计 (CAD) 软件生成的域。在实践中,这只能通过多补丁 IgA 来实现,通常与修剪或类似技术相结合。第二个问题是实现高阶离散化(通过增加样条线度),其自由度数与低阶方法相当。只有当需要近似的解足够平滑时,高阶方法才能充分发挥其潜力;否则,就需要采用自适应方法。在过去的几十年中,已经开发出了一系列针对劈叉的局部细化策略。这些方法阻碍了对依赖于张量乘积劈叉的最新进展的利用,例如矩阵组装和预处理。我们提出的自适应 IgA 策略利用了多补丁 IgA 工具箱中众所周知的方法:局部使用张量乘积样条,但允许全局使用非结构补丁配置。我们的方法适度增加了补丁的数量,并为每个补丁使用了不同的网格尺寸。这样就可以重复使用现有的代码库,恢复其他自适应方法的收敛速度,而且自由度的增加幅度很小。我们提供了一种计算全局基础的算法,并证明它在任何情况下都有效。此外,我们还给出了近似误差估计值。数值实验说明了我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-resolution isogeometric analysis – efficient adaptivity utilizing the multi-patch structure
Isogeometric Analysis (IgA) is a spline-based approach to the numerical solution of partial differential equations. The concept of IgA was designed to address two major issues. The first issue is the exact representation of domains generated from Computer-Aided Design (CAD) software. In practice, this can be realized only with multi-patch IgA, often in combination with trimming or similar techniques. The second issue is the realization of high-order discretizations (by increasing the spline degree) with a number of degrees of freedom comparable to low-order methods. High-order methods can deliver their full potential only if the solution to be approximated is sufficiently smooth; otherwise, adaptive methods are required. A zoo of local refinement strategies for splines has been developed in the last decades. Such approaches impede the utilization of recent advances that rely on tensor-product splines, e.g., matrix assembly and preconditioning. We propose a strategy for adaptive IgA that utilizes well-known approaches from the multi-patch IgA toolbox: using tensor-product splines locally, but allow for unstructured patch configurations globally. Our approach moderately increases the number of patches and utilizes different grid sizes for each patch. This allows reusing the existing code bases, recovers the convergence rates of other adaptive approaches, and increases the number of degrees of freedom only marginally. We provide an algorithm for the computation of a global basis and show that it works in any case. Additionally, we give approximation error estimates. Numerical experiments illustrate our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
期刊最新文献
Editorial Board Editorial Board A numerical method for reconstructing the potential in fractional Calderón problem with a single measurement A novel distributed-order time fractional derivative model of laser-induced thermal therapy for deep-lying tumor The use of polynomial-augmented RBF collocation method with ghost points for plane elastostatic equations of anisotropic functionally graded materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1