{"title":"2-羟基-5-硝基-4-烷氧基二苯甲酮和TRPO萃取弱碱性盐水","authors":"Guimei Zhou, Wenjun Yan, Shufan Yan, Dandan Gao, Debin Zeng, Dongdong Li, Dewen Zeng","doi":"10.1002/aic.18703","DOIUrl":null,"url":null,"abstract":"Solvent extraction of lithium by β-diketones from alkaline brine has been known to be an efficient process. However, its relatively high working pH, consequently the high alkaline consumption and substantial dissolution loss in raffinate, limit its industrial application. Herein, a novel lithium extractant, i.e., 2-hydroxy-5-nitro-4-<i>n</i>-octoxy-benzophenone (referred to as N531), was proposed, which can extract lithium at relatively lower pH with remarkable low alkaline consumption and dissolution loss. Exactly, the pH corresponding to half lithium extraction is 8.5, and the Li/Na separation factor is ~500. The extractant concentration in the raffinate varied from 0.8 to 9.3 mg L<sup>−1</sup>, depending on the pH and salinity. An application case was given to extract lithium from the raw brine of Zabuye salt lake, indicating that N531 is a commercially prospective extractant to extract lithium from alkaline brine.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"30 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lithium solvent extraction from weak alkaline brine by 2-hydroxy-5-nitro-4-alkoxy-benzophenone and TRPO\",\"authors\":\"Guimei Zhou, Wenjun Yan, Shufan Yan, Dandan Gao, Debin Zeng, Dongdong Li, Dewen Zeng\",\"doi\":\"10.1002/aic.18703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solvent extraction of lithium by β-diketones from alkaline brine has been known to be an efficient process. However, its relatively high working pH, consequently the high alkaline consumption and substantial dissolution loss in raffinate, limit its industrial application. Herein, a novel lithium extractant, i.e., 2-hydroxy-5-nitro-4-<i>n</i>-octoxy-benzophenone (referred to as N531), was proposed, which can extract lithium at relatively lower pH with remarkable low alkaline consumption and dissolution loss. Exactly, the pH corresponding to half lithium extraction is 8.5, and the Li/Na separation factor is ~500. The extractant concentration in the raffinate varied from 0.8 to 9.3 mg L<sup>−1</sup>, depending on the pH and salinity. An application case was given to extract lithium from the raw brine of Zabuye salt lake, indicating that N531 is a commercially prospective extractant to extract lithium from alkaline brine.\",\"PeriodicalId\":120,\"journal\":{\"name\":\"AIChE Journal\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIChE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/aic.18703\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18703","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Lithium solvent extraction from weak alkaline brine by 2-hydroxy-5-nitro-4-alkoxy-benzophenone and TRPO
Solvent extraction of lithium by β-diketones from alkaline brine has been known to be an efficient process. However, its relatively high working pH, consequently the high alkaline consumption and substantial dissolution loss in raffinate, limit its industrial application. Herein, a novel lithium extractant, i.e., 2-hydroxy-5-nitro-4-n-octoxy-benzophenone (referred to as N531), was proposed, which can extract lithium at relatively lower pH with remarkable low alkaline consumption and dissolution loss. Exactly, the pH corresponding to half lithium extraction is 8.5, and the Li/Na separation factor is ~500. The extractant concentration in the raffinate varied from 0.8 to 9.3 mg L−1, depending on the pH and salinity. An application case was given to extract lithium from the raw brine of Zabuye salt lake, indicating that N531 is a commercially prospective extractant to extract lithium from alkaline brine.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.