{"title":"叔胺的热降解CO2捕获:结构-活性关系和密度泛函理论计算","authors":"Tong Luo, Qi Liu, Min Xiao, Hongxia Gao, Teerawat Sema, Zhiwu Liang","doi":"10.1002/aic.18702","DOIUrl":null,"url":null,"abstract":"Aqueous amine solution is a promising absorbent for CO<sub>2</sub> capture, yet irreversible reaction, that is, degradation can happen for amine and leads to performance decrease and many operating difficulties. Despite numerous research on reaction between amine and CO<sub>2</sub> for absorption, the reaction of amine degradation is not fully understood, especially for tertiary amine which is a vital component in constructing high-performance CO<sub>2</sub> absorbent. Considering the variety of tertiary amines, this article studied the thermal stability of five tertiary amine solutions at different temperatures to mimic the regeneration condition. The density functional theory (DFT) calculation was applied to reveal the degradation mechanism. The alkylation reaction that triggered the degradation of tertiary amine was deemed as the limiting step. Then the molecular simulation method was extended to 12 tertiary amines, aiming to further illustrate the influence of molecular structure on the alkylation reaction. These results provide basic data and theoretical guidance for developing the anti-degradation CO<sub>2</sub> absorbent.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"52 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal degradation of tertiary amine for CO2 capture: Structure–activity relationships and density functional theory calculations\",\"authors\":\"Tong Luo, Qi Liu, Min Xiao, Hongxia Gao, Teerawat Sema, Zhiwu Liang\",\"doi\":\"10.1002/aic.18702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aqueous amine solution is a promising absorbent for CO<sub>2</sub> capture, yet irreversible reaction, that is, degradation can happen for amine and leads to performance decrease and many operating difficulties. Despite numerous research on reaction between amine and CO<sub>2</sub> for absorption, the reaction of amine degradation is not fully understood, especially for tertiary amine which is a vital component in constructing high-performance CO<sub>2</sub> absorbent. Considering the variety of tertiary amines, this article studied the thermal stability of five tertiary amine solutions at different temperatures to mimic the regeneration condition. The density functional theory (DFT) calculation was applied to reveal the degradation mechanism. The alkylation reaction that triggered the degradation of tertiary amine was deemed as the limiting step. Then the molecular simulation method was extended to 12 tertiary amines, aiming to further illustrate the influence of molecular structure on the alkylation reaction. These results provide basic data and theoretical guidance for developing the anti-degradation CO<sub>2</sub> absorbent.\",\"PeriodicalId\":120,\"journal\":{\"name\":\"AIChE Journal\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIChE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/aic.18702\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18702","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Thermal degradation of tertiary amine for CO2 capture: Structure–activity relationships and density functional theory calculations
Aqueous amine solution is a promising absorbent for CO2 capture, yet irreversible reaction, that is, degradation can happen for amine and leads to performance decrease and many operating difficulties. Despite numerous research on reaction between amine and CO2 for absorption, the reaction of amine degradation is not fully understood, especially for tertiary amine which is a vital component in constructing high-performance CO2 absorbent. Considering the variety of tertiary amines, this article studied the thermal stability of five tertiary amine solutions at different temperatures to mimic the regeneration condition. The density functional theory (DFT) calculation was applied to reveal the degradation mechanism. The alkylation reaction that triggered the degradation of tertiary amine was deemed as the limiting step. Then the molecular simulation method was extended to 12 tertiary amines, aiming to further illustrate the influence of molecular structure on the alkylation reaction. These results provide basic data and theoretical guidance for developing the anti-degradation CO2 absorbent.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.