基于聚类引导的截断哈希增强近似近邻搜索

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Signal Processing Letters Pub Date : 2024-11-28 DOI:10.1109/LSP.2024.3509333
Mingyang Liu;Zuyuan Yang;Wei Han;Shengli Xie
{"title":"基于聚类引导的截断哈希增强近似近邻搜索","authors":"Mingyang Liu;Zuyuan Yang;Wei Han;Shengli Xie","doi":"10.1109/LSP.2024.3509333","DOIUrl":null,"url":null,"abstract":"Hashing is essential for approximate nearest neighbor search by mapping high-dimensional data to compact binary codes. The balance between similarity preservation and code diversity is a key challenge. Existing projection-based methods often struggle with fitting binary codes to continuous space due to space heterogeneity. To address this, we propose a novel Cluster Guided Truncated Hashing (CGTH) method that uses latent cluster information to guide the binary learning process. By leveraging data clusters as anchor points and applying a truncated coding strategy, our method effectively maintains local similarity and code diversity. Experiments on benchmark datasets demonstrate that CGTH outperforms existing methods, achieving superior search performance.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"181-185"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cluster Guided Truncated Hashing for Enhanced Approximate Nearest Neighbor Search\",\"authors\":\"Mingyang Liu;Zuyuan Yang;Wei Han;Shengli Xie\",\"doi\":\"10.1109/LSP.2024.3509333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hashing is essential for approximate nearest neighbor search by mapping high-dimensional data to compact binary codes. The balance between similarity preservation and code diversity is a key challenge. Existing projection-based methods often struggle with fitting binary codes to continuous space due to space heterogeneity. To address this, we propose a novel Cluster Guided Truncated Hashing (CGTH) method that uses latent cluster information to guide the binary learning process. By leveraging data clusters as anchor points and applying a truncated coding strategy, our method effectively maintains local similarity and code diversity. Experiments on benchmark datasets demonstrate that CGTH outperforms existing methods, achieving superior search performance.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"181-185\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10771637/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10771637/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

哈希是通过将高维数据映射到紧凑的二进制代码进行近似最近邻搜索所必需的。保持相似性和代码多样性之间的平衡是一个关键的挑战。由于空间的异质性,现有的基于投影的方法往往难以将二进制码拟合到连续空间中。为了解决这个问题,我们提出了一种新的簇引导截断哈希(CGTH)方法,该方法使用潜在的簇信息来指导二进制学习过程。通过利用数据簇作为锚点并采用截断编码策略,我们的方法有效地保持了局部相似性和代码多样性。在基准数据集上的实验表明,CGTH优于现有的搜索方法,获得了更好的搜索性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cluster Guided Truncated Hashing for Enhanced Approximate Nearest Neighbor Search
Hashing is essential for approximate nearest neighbor search by mapping high-dimensional data to compact binary codes. The balance between similarity preservation and code diversity is a key challenge. Existing projection-based methods often struggle with fitting binary codes to continuous space due to space heterogeneity. To address this, we propose a novel Cluster Guided Truncated Hashing (CGTH) method that uses latent cluster information to guide the binary learning process. By leveraging data clusters as anchor points and applying a truncated coding strategy, our method effectively maintains local similarity and code diversity. Experiments on benchmark datasets demonstrate that CGTH outperforms existing methods, achieving superior search performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
期刊最新文献
Heterogeneous Dual-Branch Emotional Consistency Network for Facial Expression Recognition Adaptive Superpixel-Guided Non-Homogeneous Image Dehazing Video Inpainting Localization With Contrastive Learning Cross-View Fusion for Multi-View Clustering Piecewise Student's t-distribution Mixture Model-Based Estimation for NAND Flash Memory Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1