{"title":"通过可微分的帧到事件映射来识别启动和偏移的声音事件检测","authors":"Tomoya Yoshinaga;Keitaro Tanaka;Yoshiaki Bando;Keisuke Imoto;Shigeo Morishima","doi":"10.1109/LSP.2024.3509336","DOIUrl":null,"url":null,"abstract":"This paper presents a sound event detection (SED) method that handles sound event boundaries in a statistically principled manner. A typical approach to SED is to train a deep neural network (DNN) in a supervised manner such that the model predicts frame-wise event activities. Since the predicted activities often contain fine insertion and deletion errors due to their temporal fluctuations, post-processing has been applied to obtain more accurate onset and offset boundaries. Existing post-processing methods are, however, non-differentiable and prohibit end-to-end (E2E) training. In this paper, we propose an E2E detection method based on a probabilistic formulation of sound event sequences called a hidden semi-Markov model (HSMM). The HSMM is utilized to transform frame-wise features predicted by a DNN into posterior probabilities of sound events represented by their class labels and temporal boundaries. We jointly train the DNN and HSMM in a supervised E2E manner by maximizing the event-wise posterior probabilities of the HSMM. This objective is a differentiable function thanks to the forward-backward algorithm of the HSMM. Experimental results with real recordings show that our method outperforms baseline systems with standard post-processing methods.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"186-190"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10771642","citationCount":"0","resultStr":"{\"title\":\"Onset-and-Offset-Aware Sound Event Detection via Differentiable Frame-to-Event Mapping\",\"authors\":\"Tomoya Yoshinaga;Keitaro Tanaka;Yoshiaki Bando;Keisuke Imoto;Shigeo Morishima\",\"doi\":\"10.1109/LSP.2024.3509336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a sound event detection (SED) method that handles sound event boundaries in a statistically principled manner. A typical approach to SED is to train a deep neural network (DNN) in a supervised manner such that the model predicts frame-wise event activities. Since the predicted activities often contain fine insertion and deletion errors due to their temporal fluctuations, post-processing has been applied to obtain more accurate onset and offset boundaries. Existing post-processing methods are, however, non-differentiable and prohibit end-to-end (E2E) training. In this paper, we propose an E2E detection method based on a probabilistic formulation of sound event sequences called a hidden semi-Markov model (HSMM). The HSMM is utilized to transform frame-wise features predicted by a DNN into posterior probabilities of sound events represented by their class labels and temporal boundaries. We jointly train the DNN and HSMM in a supervised E2E manner by maximizing the event-wise posterior probabilities of the HSMM. This objective is a differentiable function thanks to the forward-backward algorithm of the HSMM. Experimental results with real recordings show that our method outperforms baseline systems with standard post-processing methods.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"186-190\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10771642\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10771642/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10771642/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Onset-and-Offset-Aware Sound Event Detection via Differentiable Frame-to-Event Mapping
This paper presents a sound event detection (SED) method that handles sound event boundaries in a statistically principled manner. A typical approach to SED is to train a deep neural network (DNN) in a supervised manner such that the model predicts frame-wise event activities. Since the predicted activities often contain fine insertion and deletion errors due to their temporal fluctuations, post-processing has been applied to obtain more accurate onset and offset boundaries. Existing post-processing methods are, however, non-differentiable and prohibit end-to-end (E2E) training. In this paper, we propose an E2E detection method based on a probabilistic formulation of sound event sequences called a hidden semi-Markov model (HSMM). The HSMM is utilized to transform frame-wise features predicted by a DNN into posterior probabilities of sound events represented by their class labels and temporal boundaries. We jointly train the DNN and HSMM in a supervised E2E manner by maximizing the event-wise posterior probabilities of the HSMM. This objective is a differentiable function thanks to the forward-backward algorithm of the HSMM. Experimental results with real recordings show that our method outperforms baseline systems with standard post-processing methods.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.