Feng Shu;Baihua Shi;Yiwen Chen;Jiatong Bai;Yifan Li;Tingting Liu;Zhu Han;Xiaohu You
{"title":"一种基于机器学习消除DOA估计相位模糊的新型异构混合海量MIMO接收机","authors":"Feng Shu;Baihua Shi;Yiwen Chen;Jiatong Bai;Yifan Li;Tingting Liu;Zhu Han;Xiaohu You","doi":"10.1109/TMLCN.2024.3506874","DOIUrl":null,"url":null,"abstract":"Massive multiple input multiple output (MIMO) antenna arrays eventuate a huge amount of circuit costs and computational complexity. To satisfy the needs of high precision and low cost in future green wireless communication, the conventional hybrid analog and digital MIMO receive structure emerges a natural choice. But it exists an issue of the phase ambiguity in direction of arrival (DOA) estimation and requires at least two time-slots to complete one-time DOA measurement with the first time-slot generating the set of candidate solutions and the second one to find a true direction by received beamforming over this set, which will lead to a low time-efficiency. To address this problem,a new heterogeneous sub-connected hybrid analog and digital (\n<inline-formula> <tex-math>$\\mathrm {H}^{2}$ </tex-math></inline-formula>\nAD) MIMO structure is proposed with an intrinsic ability of removing phase ambiguity, and then a corresponding new framework is developed to implement a rapid high-precision DOA estimation using only single time-slot. The proposed framework consists of two steps: 1) form a set of candidate solutions using existing methods like MUSIC; 2) find the class of the true solutions and compute the class mean. To infer the set of true solutions, we propose two new clustering methods: weight global minimum distance (WGMD) and weight local minimum distance (WLMD). Next, we also enhance two classic clustering methods: accelerating local weighted k-means (ALW-K-means) and improved density. Additionally, the corresponding closed-form expression of Cramer-Rao lower bound (CRLB) is derived. Simulation results show that the proposed frameworks using the above four clustering can approach the CRLB in almost all signal to noise ratio (SNR) regions except for extremely low SNR (SNR \n<inline-formula> <tex-math>$\\lt -5$ </tex-math></inline-formula>\n dB). Four clustering methods have an accuracy decreasing order as follows: WGMD, improved DBSCAN, ALW-K-means and WLMD.","PeriodicalId":100641,"journal":{"name":"IEEE Transactions on Machine Learning in Communications and Networking","volume":"3 ","pages":"17-29"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10767772","citationCount":"0","resultStr":"{\"title\":\"A New Heterogeneous Hybrid Massive MIMO Receiver With an Intrinsic Ability of Removing Phase Ambiguity of DOA Estimation via Machine Learning\",\"authors\":\"Feng Shu;Baihua Shi;Yiwen Chen;Jiatong Bai;Yifan Li;Tingting Liu;Zhu Han;Xiaohu You\",\"doi\":\"10.1109/TMLCN.2024.3506874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Massive multiple input multiple output (MIMO) antenna arrays eventuate a huge amount of circuit costs and computational complexity. To satisfy the needs of high precision and low cost in future green wireless communication, the conventional hybrid analog and digital MIMO receive structure emerges a natural choice. But it exists an issue of the phase ambiguity in direction of arrival (DOA) estimation and requires at least two time-slots to complete one-time DOA measurement with the first time-slot generating the set of candidate solutions and the second one to find a true direction by received beamforming over this set, which will lead to a low time-efficiency. To address this problem,a new heterogeneous sub-connected hybrid analog and digital (\\n<inline-formula> <tex-math>$\\\\mathrm {H}^{2}$ </tex-math></inline-formula>\\nAD) MIMO structure is proposed with an intrinsic ability of removing phase ambiguity, and then a corresponding new framework is developed to implement a rapid high-precision DOA estimation using only single time-slot. The proposed framework consists of two steps: 1) form a set of candidate solutions using existing methods like MUSIC; 2) find the class of the true solutions and compute the class mean. To infer the set of true solutions, we propose two new clustering methods: weight global minimum distance (WGMD) and weight local minimum distance (WLMD). Next, we also enhance two classic clustering methods: accelerating local weighted k-means (ALW-K-means) and improved density. Additionally, the corresponding closed-form expression of Cramer-Rao lower bound (CRLB) is derived. Simulation results show that the proposed frameworks using the above four clustering can approach the CRLB in almost all signal to noise ratio (SNR) regions except for extremely low SNR (SNR \\n<inline-formula> <tex-math>$\\\\lt -5$ </tex-math></inline-formula>\\n dB). Four clustering methods have an accuracy decreasing order as follows: WGMD, improved DBSCAN, ALW-K-means and WLMD.\",\"PeriodicalId\":100641,\"journal\":{\"name\":\"IEEE Transactions on Machine Learning in Communications and Networking\",\"volume\":\"3 \",\"pages\":\"17-29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10767772\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Machine Learning in Communications and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10767772/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Machine Learning in Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10767772/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A New Heterogeneous Hybrid Massive MIMO Receiver With an Intrinsic Ability of Removing Phase Ambiguity of DOA Estimation via Machine Learning
Massive multiple input multiple output (MIMO) antenna arrays eventuate a huge amount of circuit costs and computational complexity. To satisfy the needs of high precision and low cost in future green wireless communication, the conventional hybrid analog and digital MIMO receive structure emerges a natural choice. But it exists an issue of the phase ambiguity in direction of arrival (DOA) estimation and requires at least two time-slots to complete one-time DOA measurement with the first time-slot generating the set of candidate solutions and the second one to find a true direction by received beamforming over this set, which will lead to a low time-efficiency. To address this problem,a new heterogeneous sub-connected hybrid analog and digital (
$\mathrm {H}^{2}$
AD) MIMO structure is proposed with an intrinsic ability of removing phase ambiguity, and then a corresponding new framework is developed to implement a rapid high-precision DOA estimation using only single time-slot. The proposed framework consists of two steps: 1) form a set of candidate solutions using existing methods like MUSIC; 2) find the class of the true solutions and compute the class mean. To infer the set of true solutions, we propose two new clustering methods: weight global minimum distance (WGMD) and weight local minimum distance (WLMD). Next, we also enhance two classic clustering methods: accelerating local weighted k-means (ALW-K-means) and improved density. Additionally, the corresponding closed-form expression of Cramer-Rao lower bound (CRLB) is derived. Simulation results show that the proposed frameworks using the above four clustering can approach the CRLB in almost all signal to noise ratio (SNR) regions except for extremely low SNR (SNR
$\lt -5$
dB). Four clustering methods have an accuracy decreasing order as follows: WGMD, improved DBSCAN, ALW-K-means and WLMD.