用于 3D 物体检测的几何引导点生成技术

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Signal Processing Letters Pub Date : 2024-11-20 DOI:10.1109/LSP.2024.3503359
Kai Wang;Mingliang Zhou;Qing Lin;Guanglin Niu;Xiaowei Zhang
{"title":"用于 3D 物体检测的几何引导点生成技术","authors":"Kai Wang;Mingliang Zhou;Qing Lin;Guanglin Niu;Xiaowei Zhang","doi":"10.1109/LSP.2024.3503359","DOIUrl":null,"url":null,"abstract":"Point cloud completion 3D object detectors effectively tackle the challenge of incomplete shapes in sparse point clouds by generating pseudo points to improve detection performance. However, the absence of guidance provided by the heatmap information and the geometric shape information renders the precise recovery of object shapes an arduous task. To this end, we propose a Geometry-guided Point Generation for 3D Object Detection, named GgPG. Specifically, we first design a 3D heatmap auxiliary supervision subnetwork to enhance the quality of object proposals by capturing the actual size and position of the object within the 3D heatmap representation. Moreover, we introduce a density-aware point generation module that employs Kernel Density Estimation (KDE) to embed the point density into the grid point's feature representation, thereby enabling the completion of more precise object shapes. Our GgPG achieves progressive performance in both Waymo and KITTI benchmarks, notably GgPG outperforms PGRCNN by +1.02\n<inline-formula><tex-math>$\\%$</tex-math></inline-formula>\n, +1.18\n<inline-formula><tex-math>$\\%$</tex-math></inline-formula>\n, and +0.56\n<inline-formula><tex-math>$\\%$</tex-math></inline-formula>\n on the vehicle, pedestrian, and cyclist under LEVEL\n<inline-formula><tex-math>$\\_$</tex-math></inline-formula>\n 2 mAPH classes on Waymo Open Dataset, respectively.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"136-140"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometry-Guided Point Generation for 3D Object Detection\",\"authors\":\"Kai Wang;Mingliang Zhou;Qing Lin;Guanglin Niu;Xiaowei Zhang\",\"doi\":\"10.1109/LSP.2024.3503359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Point cloud completion 3D object detectors effectively tackle the challenge of incomplete shapes in sparse point clouds by generating pseudo points to improve detection performance. However, the absence of guidance provided by the heatmap information and the geometric shape information renders the precise recovery of object shapes an arduous task. To this end, we propose a Geometry-guided Point Generation for 3D Object Detection, named GgPG. Specifically, we first design a 3D heatmap auxiliary supervision subnetwork to enhance the quality of object proposals by capturing the actual size and position of the object within the 3D heatmap representation. Moreover, we introduce a density-aware point generation module that employs Kernel Density Estimation (KDE) to embed the point density into the grid point's feature representation, thereby enabling the completion of more precise object shapes. Our GgPG achieves progressive performance in both Waymo and KITTI benchmarks, notably GgPG outperforms PGRCNN by +1.02\\n<inline-formula><tex-math>$\\\\%$</tex-math></inline-formula>\\n, +1.18\\n<inline-formula><tex-math>$\\\\%$</tex-math></inline-formula>\\n, and +0.56\\n<inline-formula><tex-math>$\\\\%$</tex-math></inline-formula>\\n on the vehicle, pedestrian, and cyclist under LEVEL\\n<inline-formula><tex-math>$\\\\_$</tex-math></inline-formula>\\n 2 mAPH classes on Waymo Open Dataset, respectively.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"136-140\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10758765/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10758765/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

点云补全三维目标检测器通过生成伪点,有效地解决了稀疏点云中形状不完整的难题,提高了检测性能。然而,缺乏热图信息和几何形状信息的指导,使得物体形状的精确恢复是一项艰巨的任务。为此,我们提出了一种用于三维物体检测的几何引导点生成方法,称为GgPG。具体来说,我们首先设计了一个3D热图辅助监督子网,通过捕获物体在3D热图表示中的实际尺寸和位置来提高物体建议的质量。此外,我们引入了一个密度感知的点生成模块,该模块使用核密度估计(KDE)将点密度嵌入到网格点的特征表示中,从而能够完成更精确的物体形状。我们的GgPG在Waymo和KITTI基准测试中都实现了渐进式性能,特别是在Waymo开放数据集上LEVEL$\_$ 2 mAPH类下,GgPG在车辆、行人和骑自行车者上的表现分别优于PGRCNN +1.02$\%$、+1.18$\%$和+0.56$\%$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Geometry-Guided Point Generation for 3D Object Detection
Point cloud completion 3D object detectors effectively tackle the challenge of incomplete shapes in sparse point clouds by generating pseudo points to improve detection performance. However, the absence of guidance provided by the heatmap information and the geometric shape information renders the precise recovery of object shapes an arduous task. To this end, we propose a Geometry-guided Point Generation for 3D Object Detection, named GgPG. Specifically, we first design a 3D heatmap auxiliary supervision subnetwork to enhance the quality of object proposals by capturing the actual size and position of the object within the 3D heatmap representation. Moreover, we introduce a density-aware point generation module that employs Kernel Density Estimation (KDE) to embed the point density into the grid point's feature representation, thereby enabling the completion of more precise object shapes. Our GgPG achieves progressive performance in both Waymo and KITTI benchmarks, notably GgPG outperforms PGRCNN by +1.02 $\%$ , +1.18 $\%$ , and +0.56 $\%$ on the vehicle, pedestrian, and cyclist under LEVEL $\_$ 2 mAPH classes on Waymo Open Dataset, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
期刊最新文献
Heterogeneous Dual-Branch Emotional Consistency Network for Facial Expression Recognition Adaptive Superpixel-Guided Non-Homogeneous Image Dehazing Video Inpainting Localization With Contrastive Learning Cross-View Fusion for Multi-View Clustering Piecewise Student's t-distribution Mixture Model-Based Estimation for NAND Flash Memory Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1