含丁香油的生态友好型纳米结构液晶是治疗烧伤感染伤口的一种可持续方法

IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY AAPS PharmSciTech Pub Date : 2024-12-17 DOI:10.1208/s12249-024-03009-z
Sally A. EL-Zahaby, Ming Ming Wen, Ibrahim A. Abdelwahab, Yasmine M. Shahine, Sherien A. Abdelhady, Gihan A. Elbatouti
{"title":"含丁香油的生态友好型纳米结构液晶是治疗烧伤感染伤口的一种可持续方法","authors":"Sally A. EL-Zahaby,&nbsp;Ming Ming Wen,&nbsp;Ibrahim A. Abdelwahab,&nbsp;Yasmine M. Shahine,&nbsp;Sherien A. Abdelhady,&nbsp;Gihan A. Elbatouti","doi":"10.1208/s12249-024-03009-z","DOIUrl":null,"url":null,"abstract":"<p>Infections are a leading complication in patients with burns. Effective antimicrobial treatment with regenerative tissue healing is required. Utilizing components derived from plant origin such as natural oils as a sustainable and eco-friendly approach for managing disease is highly required nowadays. The aim of the current study is to assess the antibacterial and wound-healing activity of clove oil and its novel eco-friendly nanostructured liquid crystals (Eco-friendly-NLCs) formulation in treating infected burn wounds. A 2<sup>3</sup> full factorial design was used to optimize the Eco-friendly-NLCs. Clove oil and its novel nano-formulation were characterized and subjected to <i>in vitro</i> and <i>in vivo</i> assessments for their efficacy. Twenty rats were used experimentally. The optimum Eco-friendly-NLCs had 189.2 ± 1.9 nm, -22.8 ± 0.7 mV and 0.308 as values for particle size, zeta potential and polydispersity index. Transmission electron microscope images showed discrete spherical shape NLCs with no aggregations. The microbiological and pharmacological results revealed a superior efficacy regarding clove loaded Eco-friendly-NLCs in inhibiting bacterial growth (inhibition zone of 38 mm), significantly reducing inflammatory biomarker levels (<i>p</i> &lt; 0.001), promoting angiogenesis and prompt wound healing. The Eco-friendly-NLCs loaded with clove oil could be considered as a promising formulation providing anti-inflammatory, anti-bacterial and wound healing effects.</p>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1208/s12249-024-03009-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Eco-friendly Nanostructured Liquid Crystals Loaded with Clove Oil as a Sustainable Approach for Managing Infected Burn Wounds\",\"authors\":\"Sally A. EL-Zahaby,&nbsp;Ming Ming Wen,&nbsp;Ibrahim A. Abdelwahab,&nbsp;Yasmine M. Shahine,&nbsp;Sherien A. Abdelhady,&nbsp;Gihan A. Elbatouti\",\"doi\":\"10.1208/s12249-024-03009-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Infections are a leading complication in patients with burns. Effective antimicrobial treatment with regenerative tissue healing is required. Utilizing components derived from plant origin such as natural oils as a sustainable and eco-friendly approach for managing disease is highly required nowadays. The aim of the current study is to assess the antibacterial and wound-healing activity of clove oil and its novel eco-friendly nanostructured liquid crystals (Eco-friendly-NLCs) formulation in treating infected burn wounds. A 2<sup>3</sup> full factorial design was used to optimize the Eco-friendly-NLCs. Clove oil and its novel nano-formulation were characterized and subjected to <i>in vitro</i> and <i>in vivo</i> assessments for their efficacy. Twenty rats were used experimentally. The optimum Eco-friendly-NLCs had 189.2 ± 1.9 nm, -22.8 ± 0.7 mV and 0.308 as values for particle size, zeta potential and polydispersity index. Transmission electron microscope images showed discrete spherical shape NLCs with no aggregations. The microbiological and pharmacological results revealed a superior efficacy regarding clove loaded Eco-friendly-NLCs in inhibiting bacterial growth (inhibition zone of 38 mm), significantly reducing inflammatory biomarker levels (<i>p</i> &lt; 0.001), promoting angiogenesis and prompt wound healing. The Eco-friendly-NLCs loaded with clove oil could be considered as a promising formulation providing anti-inflammatory, anti-bacterial and wound healing effects.</p>\",\"PeriodicalId\":6925,\"journal\":{\"name\":\"AAPS PharmSciTech\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1208/s12249-024-03009-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPS PharmSciTech\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1208/s12249-024-03009-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-024-03009-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Eco-friendly Nanostructured Liquid Crystals Loaded with Clove Oil as a Sustainable Approach for Managing Infected Burn Wounds

Infections are a leading complication in patients with burns. Effective antimicrobial treatment with regenerative tissue healing is required. Utilizing components derived from plant origin such as natural oils as a sustainable and eco-friendly approach for managing disease is highly required nowadays. The aim of the current study is to assess the antibacterial and wound-healing activity of clove oil and its novel eco-friendly nanostructured liquid crystals (Eco-friendly-NLCs) formulation in treating infected burn wounds. A 23 full factorial design was used to optimize the Eco-friendly-NLCs. Clove oil and its novel nano-formulation were characterized and subjected to in vitro and in vivo assessments for their efficacy. Twenty rats were used experimentally. The optimum Eco-friendly-NLCs had 189.2 ± 1.9 nm, -22.8 ± 0.7 mV and 0.308 as values for particle size, zeta potential and polydispersity index. Transmission electron microscope images showed discrete spherical shape NLCs with no aggregations. The microbiological and pharmacological results revealed a superior efficacy regarding clove loaded Eco-friendly-NLCs in inhibiting bacterial growth (inhibition zone of 38 mm), significantly reducing inflammatory biomarker levels (p < 0.001), promoting angiogenesis and prompt wound healing. The Eco-friendly-NLCs loaded with clove oil could be considered as a promising formulation providing anti-inflammatory, anti-bacterial and wound healing effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AAPS PharmSciTech
AAPS PharmSciTech 医学-药学
CiteScore
6.80
自引率
3.00%
发文量
264
审稿时长
2.4 months
期刊介绍: AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.
期刊最新文献
Correction: From Bench to Bedside: ROS-Responsive Nanocarriers in Cancer Therapy Silica Nanoparticles: A Promising Vehicle for Anti-Cancer Drugs Delivery Understanding Microemulsions and Nanoemulsions in (Trans)Dermal Delivery Concerns Regarding the Use of Kirchhoff’s Laws in Pharmacokinetics Advancements in Transdermal Drug Delivery Systems: Harnessing the Potential of Macromolecular Assisted Permeation Enhancement and Novel Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1