六配位硅在磷酸硅玻璃中形成机理的第一性原理研究。

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry B Pub Date : 2025-01-09 Epub Date: 2024-12-18 DOI:10.1021/acs.jpcb.4c04427
Arata Sakakibara, Tomoyuki Tamura, Kazuya Takada, Toshihiro Kasuga
{"title":"六配位硅在磷酸硅玻璃中形成机理的第一性原理研究。","authors":"Arata Sakakibara, Tomoyuki Tamura, Kazuya Takada, Toshihiro Kasuga","doi":"10.1021/acs.jpcb.4c04427","DOIUrl":null,"url":null,"abstract":"<p><p>Six-coordinated Si (<sup>[6]</sup>Si) structures are readily formed in silicophosphate glasses with high P<sub>2</sub>O<sub>5</sub> contents. Although experiments and simulations have provided some information on the local configurations around <sup>[6]</sup>Si, further research on the formation mechanism of <sup>[6]</sup>Si at the atomic scale is needed. To investigate the formation mechanism of <sup>[6]</sup>Si, we performed dynamic and static analyses based on first-principles calculations. In first-principles molecular dynamics simulations with models in which all Si atoms are four-coordinated as the initial structure, we observed that the coordination number of Si increased, and the P-Q<sup>2</sup> (P-Q<sup><i>n</i></sup>, where <i>n</i> represents the number of bridging oxygen atoms) changed to P-Q<sup>3</sup>. Atomic energy analysis revealed that the energy decreases with the structural change from P-Q<sup>2</sup> to P-Q<sup>3</sup> exceeded the energy increase with an increase in the coordination number of Si, stabilizing of the entire system. We conclude that the key factor in the formation of <sup>[6]</sup>Si is the decrease in energy associated with the change from a nonbridging oxygen in a PO<sub>4</sub> tetrahedral structure to bridging oxygen.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"447-455"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-Principles Study on Formation Mechanism of Six-Coordinated Si in Silicophosphate Glass.\",\"authors\":\"Arata Sakakibara, Tomoyuki Tamura, Kazuya Takada, Toshihiro Kasuga\",\"doi\":\"10.1021/acs.jpcb.4c04427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Six-coordinated Si (<sup>[6]</sup>Si) structures are readily formed in silicophosphate glasses with high P<sub>2</sub>O<sub>5</sub> contents. Although experiments and simulations have provided some information on the local configurations around <sup>[6]</sup>Si, further research on the formation mechanism of <sup>[6]</sup>Si at the atomic scale is needed. To investigate the formation mechanism of <sup>[6]</sup>Si, we performed dynamic and static analyses based on first-principles calculations. In first-principles molecular dynamics simulations with models in which all Si atoms are four-coordinated as the initial structure, we observed that the coordination number of Si increased, and the P-Q<sup>2</sup> (P-Q<sup><i>n</i></sup>, where <i>n</i> represents the number of bridging oxygen atoms) changed to P-Q<sup>3</sup>. Atomic energy analysis revealed that the energy decreases with the structural change from P-Q<sup>2</sup> to P-Q<sup>3</sup> exceeded the energy increase with an increase in the coordination number of Si, stabilizing of the entire system. We conclude that the key factor in the formation of <sup>[6]</sup>Si is the decrease in energy associated with the change from a nonbridging oxygen in a PO<sub>4</sub> tetrahedral structure to bridging oxygen.</p>\",\"PeriodicalId\":60,\"journal\":{\"name\":\"The Journal of Physical Chemistry B\",\"volume\":\" \",\"pages\":\"447-455\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcb.4c04427\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c04427","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

六配位Si ([6]Si)结构在高P2O5含量的硅磷玻璃中容易形成。虽然实验和模拟已经提供了[6]Si周围局部构型的一些信息,但在原子尺度上[6]Si的形成机制还需要进一步的研究。为了研究[6]Si的形成机制,我们基于第一性原理计算进行了动态和静态分析。在所有Si原子都是四配位作为初始结构的第一性原理分子动力学模拟中,我们观察到Si的配位数增加,P-Q2 (P-Qn,其中n表示桥接氧原子的数量)变为P-Q3。原子能分析表明,从P-Q2到P-Q3结构变化所带来的能量下降超过了Si配位数增加所带来的能量增加,使整个体系趋于稳定。我们得出结论,[6]Si形成的关键因素是从PO4四面体结构中的非桥接氧转变为桥接氧所带来的能量下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
First-Principles Study on Formation Mechanism of Six-Coordinated Si in Silicophosphate Glass.

Six-coordinated Si ([6]Si) structures are readily formed in silicophosphate glasses with high P2O5 contents. Although experiments and simulations have provided some information on the local configurations around [6]Si, further research on the formation mechanism of [6]Si at the atomic scale is needed. To investigate the formation mechanism of [6]Si, we performed dynamic and static analyses based on first-principles calculations. In first-principles molecular dynamics simulations with models in which all Si atoms are four-coordinated as the initial structure, we observed that the coordination number of Si increased, and the P-Q2 (P-Qn, where n represents the number of bridging oxygen atoms) changed to P-Q3. Atomic energy analysis revealed that the energy decreases with the structural change from P-Q2 to P-Q3 exceeded the energy increase with an increase in the coordination number of Si, stabilizing of the entire system. We conclude that the key factor in the formation of [6]Si is the decrease in energy associated with the change from a nonbridging oxygen in a PO4 tetrahedral structure to bridging oxygen.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
期刊最新文献
Predicting Carbonic Anhydrase Binding Affinity: Insights from QM Cluster Models. Complementary Peptide Interactions Support the Ultra-Rigidity of Polymers of De Novo Designed Click-Functionalized Bundlemers. Ion-Ion Structural Correlation and Dynamics of Water in Aqueous NaCl Solutions with a Wide Range of Concentrations. Molecular Dynamics Insights into Water Transport Mechanisms in Polyamide Membranes: Influence of Cross-Linking Degree. Tale of Three Dithienylethenes: Following the Photocycloreversion with Ultrafast Spectroscopy and Quantum Dynamics Simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1