{"title":"在南方鳄蜥(Elgaria multicarinata)的颚肌中,持续力的不寻常现象是否会阻碍速度-耐力的权衡?","authors":"Allyn Nguyen, Kyle Leong, Natalie C Holt","doi":"10.1242/jeb.247979","DOIUrl":null,"url":null,"abstract":"<p><p>The jaw muscles of the southern alligator lizard, Elgaria multicarinata, are used in prolonged mate-holding behavior, and also to catch fast prey. In both males and females, these muscles exhibit an unusual type of high endurance known as sustained force in which contractile force does not return to baseline between subsequent contractions. This phenomenon is assumed to facilitate the prolonged mate-holding observed in this species. Skeletal muscle is often subject to a speed-endurance trade-off. Here, we determined the isometric twitch, tetanic and isotonic force-velocity properties of the jaw muscles at ∼24°C as metrics of contractile speed and compared these properties with a more typical thigh locomotory muscle to determine whether endurance by sustained force allows for circumvention of the speed-endurance trade-off. The specialized jaw muscle was generally slower than the more typical thigh muscle: time to peak twitch force, twitch 90% relaxation time (P<0.01), and tetanic 90% and 50% relaxation times (P<0.001) were significantly longer, and force-velocity properties were significantly slower (P<0.001) in the jaw than the thigh muscle. However, there seemed to be greater effects on relaxation rates and shortening velocity than on force rise times: there was no effect of muscle on time to peak, or 50% of tetanic force. Hence, the jaw muscle of the southern alligator lizard does not seem to circumvent the speed-endurance trade-off. However, the maintenance of force rise times despite slow relaxation, potentially enabled by the presence of hybrid fibers, may allow this muscle to meet the functional demand of prey capture.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Does the unusual phenomenon of sustained force circumvent the speed-endurance trade-off in the jaw muscle of the southern alligator lizard (Elgaria multicarinata)?\",\"authors\":\"Allyn Nguyen, Kyle Leong, Natalie C Holt\",\"doi\":\"10.1242/jeb.247979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The jaw muscles of the southern alligator lizard, Elgaria multicarinata, are used in prolonged mate-holding behavior, and also to catch fast prey. In both males and females, these muscles exhibit an unusual type of high endurance known as sustained force in which contractile force does not return to baseline between subsequent contractions. This phenomenon is assumed to facilitate the prolonged mate-holding observed in this species. Skeletal muscle is often subject to a speed-endurance trade-off. Here, we determined the isometric twitch, tetanic and isotonic force-velocity properties of the jaw muscles at ∼24°C as metrics of contractile speed and compared these properties with a more typical thigh locomotory muscle to determine whether endurance by sustained force allows for circumvention of the speed-endurance trade-off. The specialized jaw muscle was generally slower than the more typical thigh muscle: time to peak twitch force, twitch 90% relaxation time (P<0.01), and tetanic 90% and 50% relaxation times (P<0.001) were significantly longer, and force-velocity properties were significantly slower (P<0.001) in the jaw than the thigh muscle. However, there seemed to be greater effects on relaxation rates and shortening velocity than on force rise times: there was no effect of muscle on time to peak, or 50% of tetanic force. Hence, the jaw muscle of the southern alligator lizard does not seem to circumvent the speed-endurance trade-off. However, the maintenance of force rise times despite slow relaxation, potentially enabled by the presence of hybrid fibers, may allow this muscle to meet the functional demand of prey capture.</p>\",\"PeriodicalId\":15786,\"journal\":{\"name\":\"Journal of Experimental Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/jeb.247979\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.247979","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Does the unusual phenomenon of sustained force circumvent the speed-endurance trade-off in the jaw muscle of the southern alligator lizard (Elgaria multicarinata)?
The jaw muscles of the southern alligator lizard, Elgaria multicarinata, are used in prolonged mate-holding behavior, and also to catch fast prey. In both males and females, these muscles exhibit an unusual type of high endurance known as sustained force in which contractile force does not return to baseline between subsequent contractions. This phenomenon is assumed to facilitate the prolonged mate-holding observed in this species. Skeletal muscle is often subject to a speed-endurance trade-off. Here, we determined the isometric twitch, tetanic and isotonic force-velocity properties of the jaw muscles at ∼24°C as metrics of contractile speed and compared these properties with a more typical thigh locomotory muscle to determine whether endurance by sustained force allows for circumvention of the speed-endurance trade-off. The specialized jaw muscle was generally slower than the more typical thigh muscle: time to peak twitch force, twitch 90% relaxation time (P<0.01), and tetanic 90% and 50% relaxation times (P<0.001) were significantly longer, and force-velocity properties were significantly slower (P<0.001) in the jaw than the thigh muscle. However, there seemed to be greater effects on relaxation rates and shortening velocity than on force rise times: there was no effect of muscle on time to peak, or 50% of tetanic force. Hence, the jaw muscle of the southern alligator lizard does not seem to circumvent the speed-endurance trade-off. However, the maintenance of force rise times despite slow relaxation, potentially enabled by the presence of hybrid fibers, may allow this muscle to meet the functional demand of prey capture.
期刊介绍:
Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.