中国甜菜网虫(鳞翅目:蛾科)的时空格局及未来气候情景下的可能动态。

IF 2.1 3区 农林科学 Q1 ENTOMOLOGY Journal of Insect Science Pub Date : 2024-11-01 DOI:10.1093/jisesa/ieae116
Jinping Zhang, Qin Yang, Zhengxue Zhao, Xiaofei Yu, Jianzhou Wei, Hua Cheng, Xuechun Zhao, Maofa Yang, Baocheng Jin
{"title":"中国甜菜网虫(鳞翅目:蛾科)的时空格局及未来气候情景下的可能动态。","authors":"Jinping Zhang, Qin Yang, Zhengxue Zhao, Xiaofei Yu, Jianzhou Wei, Hua Cheng, Xuechun Zhao, Maofa Yang, Baocheng Jin","doi":"10.1093/jisesa/ieae116","DOIUrl":null,"url":null,"abstract":"<p><p>The beet webworm (BWW), Loxostege sticticalis (L.), is a notorious migratory agriculture pest of crops and fodder plants, inducing sudden outbreaks and huge losses of food and forage production. Quantifying its spatiotemporal patterns and possible dynamics under future climate scenarios may have significant implications for management policies and practices against this destructive agriculture pest. In this paper, a database containing nearly 7,000 occurrence records for the spatiotemporal distribution of BWW in China was established and its possible dynamics under future climate scenarios predicted using Maxent. We found that BWW could affect a vast geographic range of Northern China, about one third of the country's land area. The beet webworm overwintered in most of its distribution regions. Maxent model found a northward movement and distribution reduction for BWW in China under future climate scenarios. The occurrence and overwintering regions will move northward about 0.3°N-0.9°N under warming climate scenarios, and about 40%-70% of the suitable habitat and overwintering habitat will disappear by 2100. Most of the northward movement and suitable area reduction likely will happen in 2 decades. Given the vast affected area, the abrupt outbreaks, the diverse host plants, the sensitivity to climate change, as well as their long-distance migration capacity, global scale research, and monitoring the population dynamics of BWW are essential for developing effective management strategies and mitigating its impact on agriculture and ecosystems.</p>","PeriodicalId":16156,"journal":{"name":"Journal of Insect Science","volume":"24 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653570/pdf/","citationCount":"0","resultStr":"{\"title\":\"The spatiotemporal patterns of the beet webworm (Lepidoptera: Crambidae) in China and possible dynamics under future climate scenarios.\",\"authors\":\"Jinping Zhang, Qin Yang, Zhengxue Zhao, Xiaofei Yu, Jianzhou Wei, Hua Cheng, Xuechun Zhao, Maofa Yang, Baocheng Jin\",\"doi\":\"10.1093/jisesa/ieae116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The beet webworm (BWW), Loxostege sticticalis (L.), is a notorious migratory agriculture pest of crops and fodder plants, inducing sudden outbreaks and huge losses of food and forage production. Quantifying its spatiotemporal patterns and possible dynamics under future climate scenarios may have significant implications for management policies and practices against this destructive agriculture pest. In this paper, a database containing nearly 7,000 occurrence records for the spatiotemporal distribution of BWW in China was established and its possible dynamics under future climate scenarios predicted using Maxent. We found that BWW could affect a vast geographic range of Northern China, about one third of the country's land area. The beet webworm overwintered in most of its distribution regions. Maxent model found a northward movement and distribution reduction for BWW in China under future climate scenarios. The occurrence and overwintering regions will move northward about 0.3°N-0.9°N under warming climate scenarios, and about 40%-70% of the suitable habitat and overwintering habitat will disappear by 2100. Most of the northward movement and suitable area reduction likely will happen in 2 decades. Given the vast affected area, the abrupt outbreaks, the diverse host plants, the sensitivity to climate change, as well as their long-distance migration capacity, global scale research, and monitoring the population dynamics of BWW are essential for developing effective management strategies and mitigating its impact on agriculture and ecosystems.</p>\",\"PeriodicalId\":16156,\"journal\":{\"name\":\"Journal of Insect Science\",\"volume\":\"24 6\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653570/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Insect Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/jisesa/ieae116\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/jisesa/ieae116","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

甜菜网虫(Loxostege sticticalis, BWW)是一种臭名昭著的农作物和饲料植物的迁移性农业害虫,引起突然爆发和巨大的粮食和饲料生产损失。量化其在未来气候情景下的时空格局和可能的动态可能对防治这种破坏性农业害虫的管理政策和做法具有重要意义。本文建立了中国近7000条BWW发生记录的时空分布数据库,并利用Maxent预测了未来气候情景下BWW的可能动态。我们发现,BWW可能会影响中国北方广阔的地理范围,约占中国陆地面积的三分之一。甜菜网虫在其大部分分布地区过冬。Maxent模式发现,在未来气候情景下,中国BWW向北移动,分布减少。气候变暖情景下,发生区和越冬区将向北移动约0.3°N ~ 0.9°N,到2100年,约40% ~ 70%的适宜栖息地和越冬栖息地将消失。大部分北移和适宜面积减少可能发生在20年内。鉴于受影响地区广阔、突发疫情、寄主植物多样性、对气候变化的敏感性以及它们的远距离迁移能力,全球范围的研究和监测BWW的种群动态对于制定有效的管理战略和减轻其对农业和生态系统的影响至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The spatiotemporal patterns of the beet webworm (Lepidoptera: Crambidae) in China and possible dynamics under future climate scenarios.

The beet webworm (BWW), Loxostege sticticalis (L.), is a notorious migratory agriculture pest of crops and fodder plants, inducing sudden outbreaks and huge losses of food and forage production. Quantifying its spatiotemporal patterns and possible dynamics under future climate scenarios may have significant implications for management policies and practices against this destructive agriculture pest. In this paper, a database containing nearly 7,000 occurrence records for the spatiotemporal distribution of BWW in China was established and its possible dynamics under future climate scenarios predicted using Maxent. We found that BWW could affect a vast geographic range of Northern China, about one third of the country's land area. The beet webworm overwintered in most of its distribution regions. Maxent model found a northward movement and distribution reduction for BWW in China under future climate scenarios. The occurrence and overwintering regions will move northward about 0.3°N-0.9°N under warming climate scenarios, and about 40%-70% of the suitable habitat and overwintering habitat will disappear by 2100. Most of the northward movement and suitable area reduction likely will happen in 2 decades. Given the vast affected area, the abrupt outbreaks, the diverse host plants, the sensitivity to climate change, as well as their long-distance migration capacity, global scale research, and monitoring the population dynamics of BWW are essential for developing effective management strategies and mitigating its impact on agriculture and ecosystems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Insect Science
Journal of Insect Science 生物-昆虫学
CiteScore
3.70
自引率
0.00%
发文量
80
审稿时长
7.5 months
期刊介绍: The Journal of Insect Science was founded with support from the University of Arizona library in 2001 by Dr. Henry Hagedorn, who served as editor-in-chief until his death in January 2014. The Entomological Society of America was very pleased to add the Journal of Insect Science to its publishing portfolio in 2014. The fully open access journal publishes papers in all aspects of the biology of insects and other arthropods from the molecular to the ecological, and their agricultural and medical impact.
期刊最新文献
A female sterilization method for use in field-based behavioral studies of the invasive Asian longhorned beetle (Anoplophora glabripennis). Host range of the oothecal parasitoid Aprostocetus hagenowii (Hymenoptera: Eulophidae). Host size overrides maternal effects on the development of a secondary hyperparasitoid wasp. Moth caterpillar embryos and parasitoid egg infection as revealed in vivo and visualized by micro-CT scanning. Measuring the effect of RFID and marker recognition tags on cockroach (Blattodea: Blaberidae) behavior using AI-aided tracking.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1