通过时域环境解析海洋模型模拟现实海洋中的声波传播。

IF 2.1 2区 物理与天体物理 Q2 ACOUSTICS Journal of the Acoustical Society of America Pub Date : 2024-12-01 DOI:10.1121/10.0034625
Pierre-Antoine Dumont, Francis Auclair, Yann Stéphan, Franck Dumas
{"title":"通过时域环境解析海洋模型模拟现实海洋中的声波传播。","authors":"Pierre-Antoine Dumont, Francis Auclair, Yann Stéphan, Franck Dumas","doi":"10.1121/10.0034625","DOIUrl":null,"url":null,"abstract":"<p><p>The new generation of non-hydrostatic and compressible numerical models of the ocean can explicitly simulate acoustic waves when and where space and time resolution is adapted. We show that these models can consequently propagate accurately acoustic waves and modes through a free-surface, stratified ocean evolving simultaneously both in space and time, bringing them to the state of the art of acoustic propagation modelling. To some extent, both numerical cost and memory footprint may temper their range of applications but they are an unprecedented tool to evaluate deterministically the effects of ocean variability on low-frequency acoustic propagation in a realistically-evolving ocean. This potential is illustrated by two examples of three-dimensional propagation: the wedge benchmark and Kelvin-Helmholtz instabilities.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"156 6","pages":"4099-4115"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling acoustic propagation in realistic ocean through a time-domain environment-resolving ocean model.\",\"authors\":\"Pierre-Antoine Dumont, Francis Auclair, Yann Stéphan, Franck Dumas\",\"doi\":\"10.1121/10.0034625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The new generation of non-hydrostatic and compressible numerical models of the ocean can explicitly simulate acoustic waves when and where space and time resolution is adapted. We show that these models can consequently propagate accurately acoustic waves and modes through a free-surface, stratified ocean evolving simultaneously both in space and time, bringing them to the state of the art of acoustic propagation modelling. To some extent, both numerical cost and memory footprint may temper their range of applications but they are an unprecedented tool to evaluate deterministically the effects of ocean variability on low-frequency acoustic propagation in a realistically-evolving ocean. This potential is illustrated by two examples of three-dimensional propagation: the wedge benchmark and Kelvin-Helmholtz instabilities.</p>\",\"PeriodicalId\":17168,\"journal\":{\"name\":\"Journal of the Acoustical Society of America\",\"volume\":\"156 6\",\"pages\":\"4099-4115\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Acoustical Society of America\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1121/10.0034625\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0034625","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

新一代的海洋非流体静力和可压缩数值模型可以在适应空间和时间分辨率的时间和地点明确地模拟声波。我们表明,这些模型因此可以准确地传播声波和模式,通过自由表面,分层海洋同时在空间和时间上进化,使它们达到声学传播建模的艺术状态。在某种程度上,数值成本和内存占用可能会限制它们的应用范围,但它们是一种前所未有的工具,可以确定地评估海洋变化对现实不断变化的海洋中低频声波传播的影响。这种潜力通过两个三维传播的例子来说明:楔形基准和开尔文-亥姆霍兹不稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modelling acoustic propagation in realistic ocean through a time-domain environment-resolving ocean model.

The new generation of non-hydrostatic and compressible numerical models of the ocean can explicitly simulate acoustic waves when and where space and time resolution is adapted. We show that these models can consequently propagate accurately acoustic waves and modes through a free-surface, stratified ocean evolving simultaneously both in space and time, bringing them to the state of the art of acoustic propagation modelling. To some extent, both numerical cost and memory footprint may temper their range of applications but they are an unprecedented tool to evaluate deterministically the effects of ocean variability on low-frequency acoustic propagation in a realistically-evolving ocean. This potential is illustrated by two examples of three-dimensional propagation: the wedge benchmark and Kelvin-Helmholtz instabilities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
16.70%
发文量
1433
审稿时长
4.7 months
期刊介绍: Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.
期刊最新文献
A hybrid design based on alternating layered fluids for the cloaking of elastic cylinders. A stochastic and microscopic model to predict road traffic noise by random generation of single vehicles' speeds. Efficient and accurate feature-aided active tracking for underwater small targets in highly cluttered harbor environments using a full motion acoustic flow field solution. Enhancing feature-aided data association tracking in passive sonar arrays: An advanced Siamese network approach. Exploring the directivities of whistle in the Indo-Pacific humpback dolphin (Sousa chinensis) and their dependency on the whistles' frequency contour.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1