声波与反传播弱冲击波的非线性相互作用。

IF 2.1 2区 物理与天体物理 Q2 ACOUSTICS Journal of the Acoustical Society of America Pub Date : 2024-12-01 DOI:10.1121/10.0034623
François Coulouvrat, Ronan Delalande, Mathieu Ducousso
{"title":"声波与反传播弱冲击波的非线性相互作用。","authors":"François Coulouvrat, Ronan Delalande, Mathieu Ducousso","doi":"10.1121/10.0034623","DOIUrl":null,"url":null,"abstract":"<p><p>During its propagation, a shock wave may come across and interact with different perturbations, including acoustical waves. While this issue has been the subject of many studies, the particular acoustic-acoustic interaction between a weak shock and a sound wave has been very scarcely investigated. Here, a theory describing the encounter of those two waves is developed, up to second- and third-order. According to the incidence angle and shock strength, several regimes of acoustic transmission through the shock are identified. The generation of entropy as well as vorticity modes are determined, while the perturbation of the shock front by the acoustic wave is quantified. The theory predicts strongly different behaviors between air and water, and preliminary results are coherent with recent experimental observations in solids. It paves the way to both an acoustic monitoring of shock wave as well as a method to determine the quadratic and cubic nonlinear parameters of material.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"156 6","pages":"4085-4098"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear interaction of an acoustical wave with a counter-propagating weak shock.\",\"authors\":\"François Coulouvrat, Ronan Delalande, Mathieu Ducousso\",\"doi\":\"10.1121/10.0034623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During its propagation, a shock wave may come across and interact with different perturbations, including acoustical waves. While this issue has been the subject of many studies, the particular acoustic-acoustic interaction between a weak shock and a sound wave has been very scarcely investigated. Here, a theory describing the encounter of those two waves is developed, up to second- and third-order. According to the incidence angle and shock strength, several regimes of acoustic transmission through the shock are identified. The generation of entropy as well as vorticity modes are determined, while the perturbation of the shock front by the acoustic wave is quantified. The theory predicts strongly different behaviors between air and water, and preliminary results are coherent with recent experimental observations in solids. It paves the way to both an acoustic monitoring of shock wave as well as a method to determine the quadratic and cubic nonlinear parameters of material.</p>\",\"PeriodicalId\":17168,\"journal\":{\"name\":\"Journal of the Acoustical Society of America\",\"volume\":\"156 6\",\"pages\":\"4085-4098\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Acoustical Society of America\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1121/10.0034623\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0034623","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

在其传播过程中,冲击波可能会遇到不同的扰动,包括声波,并与之相互作用。虽然这个问题已经成为许多研究的主题,但对弱冲击和声波之间的特殊声-声相互作用的研究却很少。在这里,一个描述这两个波相遇的理论被开发出来,一直到二阶和三阶。根据入射角和激波强度的不同,确定了声波通过激波的几种传输方式。确定了激波前的熵模态和涡模态的产生,并对激波前的扰动进行了量化。该理论预测了空气和水之间的强烈不同行为,初步结果与最近在固体中的实验观察一致。为冲击波的声学监测和材料二次、三次非线性参数的确定奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear interaction of an acoustical wave with a counter-propagating weak shock.

During its propagation, a shock wave may come across and interact with different perturbations, including acoustical waves. While this issue has been the subject of many studies, the particular acoustic-acoustic interaction between a weak shock and a sound wave has been very scarcely investigated. Here, a theory describing the encounter of those two waves is developed, up to second- and third-order. According to the incidence angle and shock strength, several regimes of acoustic transmission through the shock are identified. The generation of entropy as well as vorticity modes are determined, while the perturbation of the shock front by the acoustic wave is quantified. The theory predicts strongly different behaviors between air and water, and preliminary results are coherent with recent experimental observations in solids. It paves the way to both an acoustic monitoring of shock wave as well as a method to determine the quadratic and cubic nonlinear parameters of material.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
16.70%
发文量
1433
审稿时长
4.7 months
期刊介绍: Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.
期刊最新文献
A hybrid design based on alternating layered fluids for the cloaking of elastic cylinders. A stochastic and microscopic model to predict road traffic noise by random generation of single vehicles' speeds. Efficient and accurate feature-aided active tracking for underwater small targets in highly cluttered harbor environments using a full motion acoustic flow field solution. Enhancing feature-aided data association tracking in passive sonar arrays: An advanced Siamese network approach. Exploring the directivities of whistle in the Indo-Pacific humpback dolphin (Sousa chinensis) and their dependency on the whistles' frequency contour.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1