一种类似于卵菌 Nep1 的细胞溶解素与天然膜和植物细胞模拟膜的相互作用

IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Membrane Biology Pub Date : 2024-12-18 DOI:10.1007/s00232-024-00330-3
Tina Snoj, Tjaša Lukan, Kristina Gruden, Gregor Anderluh
{"title":"一种类似于卵菌 Nep1 的细胞溶解素与天然膜和植物细胞模拟膜的相互作用","authors":"Tina Snoj, Tjaša Lukan, Kristina Gruden, Gregor Anderluh","doi":"10.1007/s00232-024-00330-3","DOIUrl":null,"url":null,"abstract":"<p><p>Plants are attacked by various pathogens that secrete a variety of effectors to damage host cells and facilitate infection. One of the largest and so far understudied microbial protein families of effectors is necrosis- and ethylene-inducing peptide-1-like proteins (NLPs), which are involved in important plant diseases. Many NLPs act as cytolytic toxins that cause cell death and tissue necrosis by disrupting the plant's plasma membrane. Their mechanism of action is unique and leads to the formation of small, transient membrane ruptures. Here, we capture the interaction of the cytotoxic model NLP from the oomycete Pythium aphanidermatum, NLP<sub>Pya</sub>, with plant cell-mimicking membranes of giant unilamellar vesicles (GUVs) and tobacco protoplasts using confocal fluorescence microscopy. We show that the permeabilization of GUVs by NLP<sub>Pya</sub> is concentration- and time-dependent, confirm the small size of the pores by observing the inability of NLP<sub>Pya</sub> monomers to pass through them, image the morphological changes of GUVs at higher concentrations of NLP<sub>Pya</sub> and confirm its oligomerization on the membrane of GUVs. In addition, NLP<sub>Pya</sub> bound to plasma membranes of protoplasts, which showed varying responses. Our results provide new insights into the interaction of NLP<sub>Pya</sub> with model lipid membranes containing plant-derived sphingolipids.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interaction of an Oomycete Nep1-like Cytolysin with Natural and Plant Cell-Mimicking Membranes.\",\"authors\":\"Tina Snoj, Tjaša Lukan, Kristina Gruden, Gregor Anderluh\",\"doi\":\"10.1007/s00232-024-00330-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plants are attacked by various pathogens that secrete a variety of effectors to damage host cells and facilitate infection. One of the largest and so far understudied microbial protein families of effectors is necrosis- and ethylene-inducing peptide-1-like proteins (NLPs), which are involved in important plant diseases. Many NLPs act as cytolytic toxins that cause cell death and tissue necrosis by disrupting the plant's plasma membrane. Their mechanism of action is unique and leads to the formation of small, transient membrane ruptures. Here, we capture the interaction of the cytotoxic model NLP from the oomycete Pythium aphanidermatum, NLP<sub>Pya</sub>, with plant cell-mimicking membranes of giant unilamellar vesicles (GUVs) and tobacco protoplasts using confocal fluorescence microscopy. We show that the permeabilization of GUVs by NLP<sub>Pya</sub> is concentration- and time-dependent, confirm the small size of the pores by observing the inability of NLP<sub>Pya</sub> monomers to pass through them, image the morphological changes of GUVs at higher concentrations of NLP<sub>Pya</sub> and confirm its oligomerization on the membrane of GUVs. In addition, NLP<sub>Pya</sub> bound to plasma membranes of protoplasts, which showed varying responses. Our results provide new insights into the interaction of NLP<sub>Pya</sub> with model lipid membranes containing plant-derived sphingolipids.</p>\",\"PeriodicalId\":50129,\"journal\":{\"name\":\"Journal of Membrane Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00232-024-00330-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00232-024-00330-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

植物受到各种病原体的攻击,这些病原体会分泌各种效应物来破坏宿主细胞并促进感染。坏死和乙烯诱导肽-1样蛋白(nlp)是迄今为止研究最充分的微生物蛋白效应家族之一,它与重要的植物疾病有关。许多nlp作为细胞溶解毒素,通过破坏植物的质膜导致细胞死亡和组织坏死。它们的作用机制是独特的,并导致形成小的,短暂的膜破裂。在这里,我们利用共聚焦荧光显微镜捕捉到了来自卵菌皮霉(Pythium aphanidermatum, NLPPya)的细胞毒性模型NLP与巨大单层囊泡(GUVs)和烟草原生质体的植物细胞模拟膜的相互作用。我们发现NLPPya对guv的渗透性是浓度和时间依赖的,通过观察NLPPya单体无法通过孔来证实孔的小尺寸,通过图像显示高浓度NLPPya对guv的形态变化,并证实其在guv膜上的寡聚。此外,NLPPya结合到原生质体的质膜上,表现出不同的反应。我们的研究结果为NLPPya与含有植物鞘脂的模型脂膜的相互作用提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interaction of an Oomycete Nep1-like Cytolysin with Natural and Plant Cell-Mimicking Membranes.

Plants are attacked by various pathogens that secrete a variety of effectors to damage host cells and facilitate infection. One of the largest and so far understudied microbial protein families of effectors is necrosis- and ethylene-inducing peptide-1-like proteins (NLPs), which are involved in important plant diseases. Many NLPs act as cytolytic toxins that cause cell death and tissue necrosis by disrupting the plant's plasma membrane. Their mechanism of action is unique and leads to the formation of small, transient membrane ruptures. Here, we capture the interaction of the cytotoxic model NLP from the oomycete Pythium aphanidermatum, NLPPya, with plant cell-mimicking membranes of giant unilamellar vesicles (GUVs) and tobacco protoplasts using confocal fluorescence microscopy. We show that the permeabilization of GUVs by NLPPya is concentration- and time-dependent, confirm the small size of the pores by observing the inability of NLPPya monomers to pass through them, image the morphological changes of GUVs at higher concentrations of NLPPya and confirm its oligomerization on the membrane of GUVs. In addition, NLPPya bound to plasma membranes of protoplasts, which showed varying responses. Our results provide new insights into the interaction of NLPPya with model lipid membranes containing plant-derived sphingolipids.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Membrane Biology
Journal of Membrane Biology 生物-生化与分子生物学
CiteScore
4.80
自引率
4.20%
发文量
63
审稿时长
6-12 weeks
期刊介绍: The Journal of Membrane Biology is dedicated to publishing high-quality science related to membrane biology, biochemistry and biophysics. In particular, we welcome work that uses modern experimental or computational methods including but not limited to those with microscopy, diffraction, NMR, computer simulations, or biochemistry aimed at membrane associated or membrane embedded proteins or model membrane systems. These methods might be applied to study topics like membrane protein structure and function, membrane mediated or controlled signaling mechanisms, cell-cell communication via gap junctions, the behavior of proteins and lipids based on monolayer or bilayer systems, or genetic and regulatory mechanisms controlling membrane function. Research articles, short communications and reviews are all welcome. We also encourage authors to consider publishing ''negative'' results where experiments or simulations were well performed, but resulted in unusual or unexpected outcomes without obvious explanations. While we welcome connections to clinical studies, submissions that are primarily clinical in nature or that fail to make connections to the basic science issues of membrane structure, chemistry and function, are not appropriate for the journal. In a similar way, studies that are primarily descriptive and narratives of assays in a clinical or population study are best published in other journals. If you are not certain, it is entirely appropriate to write to us to inquire if your study is a good fit for the journal.
期刊最新文献
Sphingomyelin Inhibits Hydrolytic Activity of Heterodimeric PLA2 in Model Myelin Membranes: Pharmacological Relevance. The Role of the Swollen State in Cell Proliferation. Effect of Triterpenoids Betulin and Betulinic Acid on Pulmonary Surfactant Membranes. Cell-Free Systems and Their Importance in the Study of Membrane Proteins. Structural Dynamics of the Slide Helix of Inactive/Closed Conformation of KirBac1.1 in Micelles and Membranes: A Fluorescence Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1