对羟基苯甲酸液晶聚合物的分子机理分析I:热性能。

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry B Pub Date : 2025-01-09 Epub Date: 2024-12-19 DOI:10.1021/acs.jpcb.4c06169
Kazushi Fujimoto, Hiroaki Ishikawa, Minoru Shimooka, Toshihiro Kaneko, Susumu Okazaki
{"title":"对羟基苯甲酸液晶聚合物的分子机理分析I:热性能。","authors":"Kazushi Fujimoto, Hiroaki Ishikawa, Minoru Shimooka, Toshihiro Kaneko, Susumu Okazaki","doi":"10.1021/acs.jpcb.4c06169","DOIUrl":null,"url":null,"abstract":"<p><p>All-atom molecular dynamics (MD) calculations of the crystalline polymeric <i>p</i>-hydroxybenzoic acid (<i>p</i>HBA) were conducted at various temperatures to investigate its thermal response. The calculated structure factor equivalent to the X-ray diffraction pattern of <i>p</i>HBA clearly showed two phase transitions occurring at 600 and 650 K. The first transition at 600 K occurred from the orthorhombic phase to the pseudohexagonal phase, identified by the presence of the 211-peak. This peak disappeared during the second transition at 650 K, indicating that the phase at 650 K was hexagonal. The structure of the pseudohexagonal phase was anisotropic with respect to the <i>ab</i> plane but isotropic in the hexagonal phase. Discontinuous changes in the calculated unit cell volume and unit cell length were observed at 600 K, associated with the first phase transition. We also calculated the linear expansion coefficients in three directions. An anisotropic expansion was observed in three directions for the orthorhombic crystal. In particular, the linear expansion coefficient in the <i>c</i>-direction was negative. In contrast to this, an isotropic expansion was found in the <i>a</i>- and <i>b</i>-directions for the hexagonal crystal, while the expansion in the <i>c</i>-direction is still negative. This study provides valuable insights into the thermal behavior of polymeric <i>p</i>HBA, which is essential for understanding its structural transformations and designing crystalline polymers with tailored thermal properties.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"524-531"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Mechanistic Analysis of Liquid-Crystalline Polymers Composed of <i>p</i>-Hydroxybenzoic Acid I: Thermal Properties.\",\"authors\":\"Kazushi Fujimoto, Hiroaki Ishikawa, Minoru Shimooka, Toshihiro Kaneko, Susumu Okazaki\",\"doi\":\"10.1021/acs.jpcb.4c06169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>All-atom molecular dynamics (MD) calculations of the crystalline polymeric <i>p</i>-hydroxybenzoic acid (<i>p</i>HBA) were conducted at various temperatures to investigate its thermal response. The calculated structure factor equivalent to the X-ray diffraction pattern of <i>p</i>HBA clearly showed two phase transitions occurring at 600 and 650 K. The first transition at 600 K occurred from the orthorhombic phase to the pseudohexagonal phase, identified by the presence of the 211-peak. This peak disappeared during the second transition at 650 K, indicating that the phase at 650 K was hexagonal. The structure of the pseudohexagonal phase was anisotropic with respect to the <i>ab</i> plane but isotropic in the hexagonal phase. Discontinuous changes in the calculated unit cell volume and unit cell length were observed at 600 K, associated with the first phase transition. We also calculated the linear expansion coefficients in three directions. An anisotropic expansion was observed in three directions for the orthorhombic crystal. In particular, the linear expansion coefficient in the <i>c</i>-direction was negative. In contrast to this, an isotropic expansion was found in the <i>a</i>- and <i>b</i>-directions for the hexagonal crystal, while the expansion in the <i>c</i>-direction is still negative. This study provides valuable insights into the thermal behavior of polymeric <i>p</i>HBA, which is essential for understanding its structural transformations and designing crystalline polymers with tailored thermal properties.</p>\",\"PeriodicalId\":60,\"journal\":{\"name\":\"The Journal of Physical Chemistry B\",\"volume\":\" \",\"pages\":\"524-531\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcb.4c06169\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c06169","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

对羟基苯甲酸晶体(pHBA)在不同温度下进行了全原子分子动力学(MD)计算,研究了其热响应。与pHBA x射线衍射图等效的计算结构因子清楚地显示在600和650 K时发生了两次相变。第一次转变发生在600 K时,从正交相到伪六方相,通过211峰的存在来识别。该峰在650 K时第二次转变时消失,表明650 K时相为六边形。伪六方相的结构在ab平面上是各向异性的,而在六方相上是各向同性的。在600 K时,计算得到的单元胞体积和单元胞长度发生了不连续的变化,这与第一相转变有关。我们还计算了三个方向的线性膨胀系数。在正交晶系中观察到三个方向的各向异性膨胀。特别是,c方向的线膨胀系数为负。与此相反,六方晶体在a和b方向上发现了各向同性的膨胀,而在c方向上的膨胀仍然是负的。这项研究为pHBA聚合物的热行为提供了有价值的见解,这对于理解其结构转变和设计具有定制热性能的结晶聚合物至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular Mechanistic Analysis of Liquid-Crystalline Polymers Composed of p-Hydroxybenzoic Acid I: Thermal Properties.

All-atom molecular dynamics (MD) calculations of the crystalline polymeric p-hydroxybenzoic acid (pHBA) were conducted at various temperatures to investigate its thermal response. The calculated structure factor equivalent to the X-ray diffraction pattern of pHBA clearly showed two phase transitions occurring at 600 and 650 K. The first transition at 600 K occurred from the orthorhombic phase to the pseudohexagonal phase, identified by the presence of the 211-peak. This peak disappeared during the second transition at 650 K, indicating that the phase at 650 K was hexagonal. The structure of the pseudohexagonal phase was anisotropic with respect to the ab plane but isotropic in the hexagonal phase. Discontinuous changes in the calculated unit cell volume and unit cell length were observed at 600 K, associated with the first phase transition. We also calculated the linear expansion coefficients in three directions. An anisotropic expansion was observed in three directions for the orthorhombic crystal. In particular, the linear expansion coefficient in the c-direction was negative. In contrast to this, an isotropic expansion was found in the a- and b-directions for the hexagonal crystal, while the expansion in the c-direction is still negative. This study provides valuable insights into the thermal behavior of polymeric pHBA, which is essential for understanding its structural transformations and designing crystalline polymers with tailored thermal properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
期刊最新文献
Predicting Carbonic Anhydrase Binding Affinity: Insights from QM Cluster Models. Complementary Peptide Interactions Support the Ultra-Rigidity of Polymers of De Novo Designed Click-Functionalized Bundlemers. Ion-Ion Structural Correlation and Dynamics of Water in Aqueous NaCl Solutions with a Wide Range of Concentrations. Molecular Dynamics Insights into Water Transport Mechanisms in Polyamide Membranes: Influence of Cross-Linking Degree. Tale of Three Dithienylethenes: Following the Photocycloreversion with Ultrafast Spectroscopy and Quantum Dynamics Simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1