{"title":"DSE-HNGCN:基于挖掘药物和副作用相互作用的异构网络预测药物副作用频率。","authors":"Xuhao Ma, Tingfang Wu, Geng Li, Junkai Wang, Yelu Jiang, Lijun Quan, Qiang Lyu","doi":"10.1016/j.jmb.2024.168916","DOIUrl":null,"url":null,"abstract":"<p><p>Evaluating the frequencies of drug-side effects is crucial in drug development and risk-benefit analysis. While existing deep learning methods show promise, they have yet to explore using heterogeneous networks to simultaneously model the various relationship between drugs and side effects, highlighting areas for potential enhancement. In this study, we propose DSE-HNGCN, a novel method that leverages heterogeneous networks to simultaneously model the various relationships between drugs and side effects. By employing multi-layer graph convolutional networks, we aim to mine the interactions between drugs and side effects to predict the frequencies of drug-side effects. To address the over-smoothing problem in graph convolutional networks and capture diverse semantic information from different layers, we introduce a layer importance combination strategy. Additionally, we have developed an integrated prediction module that effectively utilizes drug and side effect features from different networks. Our experimental results, using benchmark datasets in a range of scenarios, show that our model outperforms existing methods in predicting the frequencies of drug-side effects. Comparative experiments and visual analysis highlight the substantial benefits of incorporating heterogeneous networks and other pertinent modules, thus improving the accuracy of DSE-HNGCN predictions. We also provide interpretability for DSE-HNGCN, indicating that the extracted features are potentially biologically significant. Case studies validate our model's capability to identify potential side effects of drugs, offering valuable insights for subsequent biological validation experiments.</p>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":" ","pages":"168916"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DSE-HNGCN: Predicting the frequencies of drug-side effects based on heterogeneous networks with mining interactions between drugs and side effects.\",\"authors\":\"Xuhao Ma, Tingfang Wu, Geng Li, Junkai Wang, Yelu Jiang, Lijun Quan, Qiang Lyu\",\"doi\":\"10.1016/j.jmb.2024.168916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Evaluating the frequencies of drug-side effects is crucial in drug development and risk-benefit analysis. While existing deep learning methods show promise, they have yet to explore using heterogeneous networks to simultaneously model the various relationship between drugs and side effects, highlighting areas for potential enhancement. In this study, we propose DSE-HNGCN, a novel method that leverages heterogeneous networks to simultaneously model the various relationships between drugs and side effects. By employing multi-layer graph convolutional networks, we aim to mine the interactions between drugs and side effects to predict the frequencies of drug-side effects. To address the over-smoothing problem in graph convolutional networks and capture diverse semantic information from different layers, we introduce a layer importance combination strategy. Additionally, we have developed an integrated prediction module that effectively utilizes drug and side effect features from different networks. Our experimental results, using benchmark datasets in a range of scenarios, show that our model outperforms existing methods in predicting the frequencies of drug-side effects. Comparative experiments and visual analysis highlight the substantial benefits of incorporating heterogeneous networks and other pertinent modules, thus improving the accuracy of DSE-HNGCN predictions. We also provide interpretability for DSE-HNGCN, indicating that the extracted features are potentially biologically significant. Case studies validate our model's capability to identify potential side effects of drugs, offering valuable insights for subsequent biological validation experiments.</p>\",\"PeriodicalId\":369,\"journal\":{\"name\":\"Journal of Molecular Biology\",\"volume\":\" \",\"pages\":\"168916\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmb.2024.168916\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmb.2024.168916","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
DSE-HNGCN: Predicting the frequencies of drug-side effects based on heterogeneous networks with mining interactions between drugs and side effects.
Evaluating the frequencies of drug-side effects is crucial in drug development and risk-benefit analysis. While existing deep learning methods show promise, they have yet to explore using heterogeneous networks to simultaneously model the various relationship between drugs and side effects, highlighting areas for potential enhancement. In this study, we propose DSE-HNGCN, a novel method that leverages heterogeneous networks to simultaneously model the various relationships between drugs and side effects. By employing multi-layer graph convolutional networks, we aim to mine the interactions between drugs and side effects to predict the frequencies of drug-side effects. To address the over-smoothing problem in graph convolutional networks and capture diverse semantic information from different layers, we introduce a layer importance combination strategy. Additionally, we have developed an integrated prediction module that effectively utilizes drug and side effect features from different networks. Our experimental results, using benchmark datasets in a range of scenarios, show that our model outperforms existing methods in predicting the frequencies of drug-side effects. Comparative experiments and visual analysis highlight the substantial benefits of incorporating heterogeneous networks and other pertinent modules, thus improving the accuracy of DSE-HNGCN predictions. We also provide interpretability for DSE-HNGCN, indicating that the extracted features are potentially biologically significant. Case studies validate our model's capability to identify potential side effects of drugs, offering valuable insights for subsequent biological validation experiments.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.