LOC730101通过抑制BECN1介导的自噬介导的DNA损伤修复,提高卵巢癌药物敏感性。

IF 8.1 1区 生物学 Q1 CELL BIOLOGY Cell Death & Disease Pub Date : 2024-12-18 DOI:10.1038/s41419-024-07278-1
Yancheng Zhong, Yang Shuai, Juan Yang, Mojian Zhang, Tiantian He, Leliang Zheng, Sheng Yang, Shuping Peng
{"title":"LOC730101通过抑制BECN1介导的自噬介导的DNA损伤修复,提高卵巢癌药物敏感性。","authors":"Yancheng Zhong, Yang Shuai, Juan Yang, Mojian Zhang, Tiantian He, Leliang Zheng, Sheng Yang, Shuping Peng","doi":"10.1038/s41419-024-07278-1","DOIUrl":null,"url":null,"abstract":"<p><p>Drug resistance and recurrence are still the bottlenecks in the clinical treatment of ovarian cancer (OC), seriously affecting patients' prognosis. Therefore, it is an urgent challenge for OC to be overcome towards precision therapy by studying the mechanism of OC drug resistance, finding new drug resistance targets and developing new effective treatment strategies. In this study, we found that lncRNA LOC730101 played an essential role in attenuating drug resistance in OC. LOC730101 was significantly down-regulated in platinum-resistant ovarian cancer tissues, and ectopic overexpression of LOC730101 substantially increased chemotherapy-induced apoptosis. Mechanistically, LOC730101 specifically binds to BECN1 and inhibits the formation of autophagosome BECN1/VPS34 by reducing phosphorylation of BECN1, thereby inhibiting autophagy and promoting drug sensitivity in ovarian cancer cells following treatment with cisplatin and PARP inhibitors. Moreover, LOC730101 inhibits the expression and activity of RNF168 via p62, which in turn affects H2A ubiquitination-mediated DNA damage repair and promotes drug sensitivity in ovarian cancer cells. Our findings demonstrated that LOC730101 played an important role in regulating the formation of the autophagic complex and that inhibition of autophagy significantly enhances the drug sensitivity of OC. And LOC730101 may be used as a prognostic marker to predict the sensitivity of OC to platinum and PARP inhibitors.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"15 12","pages":"893"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655529/pdf/","citationCount":"0","resultStr":"{\"title\":\"LOC730101 improves ovarian cancer drug sensitivity by inhibiting autophagy-mediated DNA damage repair via BECN1.\",\"authors\":\"Yancheng Zhong, Yang Shuai, Juan Yang, Mojian Zhang, Tiantian He, Leliang Zheng, Sheng Yang, Shuping Peng\",\"doi\":\"10.1038/s41419-024-07278-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drug resistance and recurrence are still the bottlenecks in the clinical treatment of ovarian cancer (OC), seriously affecting patients' prognosis. Therefore, it is an urgent challenge for OC to be overcome towards precision therapy by studying the mechanism of OC drug resistance, finding new drug resistance targets and developing new effective treatment strategies. In this study, we found that lncRNA LOC730101 played an essential role in attenuating drug resistance in OC. LOC730101 was significantly down-regulated in platinum-resistant ovarian cancer tissues, and ectopic overexpression of LOC730101 substantially increased chemotherapy-induced apoptosis. Mechanistically, LOC730101 specifically binds to BECN1 and inhibits the formation of autophagosome BECN1/VPS34 by reducing phosphorylation of BECN1, thereby inhibiting autophagy and promoting drug sensitivity in ovarian cancer cells following treatment with cisplatin and PARP inhibitors. Moreover, LOC730101 inhibits the expression and activity of RNF168 via p62, which in turn affects H2A ubiquitination-mediated DNA damage repair and promotes drug sensitivity in ovarian cancer cells. Our findings demonstrated that LOC730101 played an important role in regulating the formation of the autophagic complex and that inhibition of autophagy significantly enhances the drug sensitivity of OC. And LOC730101 may be used as a prognostic marker to predict the sensitivity of OC to platinum and PARP inhibitors.</p>\",\"PeriodicalId\":9734,\"journal\":{\"name\":\"Cell Death & Disease\",\"volume\":\"15 12\",\"pages\":\"893\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655529/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death & Disease\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41419-024-07278-1\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-024-07278-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

耐药和复发仍是卵巢癌临床治疗的瓶颈,严重影响患者预后。因此,研究卵巢癌耐药机制,寻找新的耐药靶点,开发新的有效治疗策略,是卵巢癌精准治疗面临的迫切挑战。在本研究中,我们发现lncRNA LOC730101在OC的耐药减弱中发挥了重要作用。LOC730101在铂耐药卵巢癌组织中显著下调,异位过表达LOC730101显著增加化疗诱导的细胞凋亡。机制上,LOC730101特异性结合BECN1,通过降低BECN1的磷酸化抑制自噬体BECN1/VPS34的形成,从而抑制自噬,促进顺铂和PARP抑制剂治疗后卵巢癌细胞的药物敏感性。此外,LOC730101通过p62抑制RNF168的表达和活性,进而影响H2A泛素化介导的DNA损伤修复,促进卵巢癌细胞的药物敏感性。我们的研究结果表明LOC730101在调节自噬复合物的形成中发挥了重要作用,抑制自噬可显著增强OC的药物敏感性。LOC730101可作为预测OC对铂和PARP抑制剂敏感性的预后标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LOC730101 improves ovarian cancer drug sensitivity by inhibiting autophagy-mediated DNA damage repair via BECN1.

Drug resistance and recurrence are still the bottlenecks in the clinical treatment of ovarian cancer (OC), seriously affecting patients' prognosis. Therefore, it is an urgent challenge for OC to be overcome towards precision therapy by studying the mechanism of OC drug resistance, finding new drug resistance targets and developing new effective treatment strategies. In this study, we found that lncRNA LOC730101 played an essential role in attenuating drug resistance in OC. LOC730101 was significantly down-regulated in platinum-resistant ovarian cancer tissues, and ectopic overexpression of LOC730101 substantially increased chemotherapy-induced apoptosis. Mechanistically, LOC730101 specifically binds to BECN1 and inhibits the formation of autophagosome BECN1/VPS34 by reducing phosphorylation of BECN1, thereby inhibiting autophagy and promoting drug sensitivity in ovarian cancer cells following treatment with cisplatin and PARP inhibitors. Moreover, LOC730101 inhibits the expression and activity of RNF168 via p62, which in turn affects H2A ubiquitination-mediated DNA damage repair and promotes drug sensitivity in ovarian cancer cells. Our findings demonstrated that LOC730101 played an important role in regulating the formation of the autophagic complex and that inhibition of autophagy significantly enhances the drug sensitivity of OC. And LOC730101 may be used as a prognostic marker to predict the sensitivity of OC to platinum and PARP inhibitors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
期刊最新文献
MAPK4 inhibits the early aberrant activation of B cells in rheumatoid arthritis by promoting the IRF4-SHIP1 signaling pathway. ZBP1-mediated PANoptosis is a crucial lethal form in diverse keratinocyte death modalities in UVB-induced skin injury. Ferroptosis triggers mitochondrial fragmentation via Drp1 activation. Positive feedback loop involving AMPK and CLYBL acetylation links metabolic rewiring and inflammatory responses. RNAi-based ALOX15B silencing augments keratinocyte inflammation in vitro via EGFR/STAT1/JAK1 signalling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1