{"title":"帕金森病运动控制异常的病理生理学研究。","authors":"Thomas Wichmann","doi":"10.1101/cshperspect.a041616","DOIUrl":null,"url":null,"abstract":"<p><p>Research in the last few decades has brought us closer to an understanding of the brain circuit abnormalities that underlie parkinsonian motor signs. This article summarizes the current knowledge in this rapidly emerging field. Traditional observations of activity changes of basal ganglia neurons that accompany akinesia and bradykinesia have been supplemented with new knowledge regarding specific pathophysiologic changes that are associated with other parkinsonian signs, such as tremor and gait impairments. New research also emphasizes the role of non-basal ganglia structures in parkinsonism, including the pedunculopontine nucleus, the cerebellum, and the cerebral cortex, and the role of structural and functional neuroplasticity. A more detailed understanding of the brain network abnormalities that result from Parkinson's disease is necessary to arrive at more effective and specific treatments for these symptoms in parkinsonian patients through circuit interventions reaching from deep brain stimulation to genetic and chemogenetic treatments.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pathophysiology of Motor Control Abnormalities in Parkinson's Disease.\",\"authors\":\"Thomas Wichmann\",\"doi\":\"10.1101/cshperspect.a041616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Research in the last few decades has brought us closer to an understanding of the brain circuit abnormalities that underlie parkinsonian motor signs. This article summarizes the current knowledge in this rapidly emerging field. Traditional observations of activity changes of basal ganglia neurons that accompany akinesia and bradykinesia have been supplemented with new knowledge regarding specific pathophysiologic changes that are associated with other parkinsonian signs, such as tremor and gait impairments. New research also emphasizes the role of non-basal ganglia structures in parkinsonism, including the pedunculopontine nucleus, the cerebellum, and the cerebral cortex, and the role of structural and functional neuroplasticity. A more detailed understanding of the brain network abnormalities that result from Parkinson's disease is necessary to arrive at more effective and specific treatments for these symptoms in parkinsonian patients through circuit interventions reaching from deep brain stimulation to genetic and chemogenetic treatments.</p>\",\"PeriodicalId\":10452,\"journal\":{\"name\":\"Cold Spring Harbor perspectives in medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Spring Harbor perspectives in medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1101/cshperspect.a041616\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor perspectives in medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1101/cshperspect.a041616","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Pathophysiology of Motor Control Abnormalities in Parkinson's Disease.
Research in the last few decades has brought us closer to an understanding of the brain circuit abnormalities that underlie parkinsonian motor signs. This article summarizes the current knowledge in this rapidly emerging field. Traditional observations of activity changes of basal ganglia neurons that accompany akinesia and bradykinesia have been supplemented with new knowledge regarding specific pathophysiologic changes that are associated with other parkinsonian signs, such as tremor and gait impairments. New research also emphasizes the role of non-basal ganglia structures in parkinsonism, including the pedunculopontine nucleus, the cerebellum, and the cerebral cortex, and the role of structural and functional neuroplasticity. A more detailed understanding of the brain network abnormalities that result from Parkinson's disease is necessary to arrive at more effective and specific treatments for these symptoms in parkinsonian patients through circuit interventions reaching from deep brain stimulation to genetic and chemogenetic treatments.
期刊介绍:
Cold Spring Harbor Perspectives in Medicine is a monthly online publication comprising reviews on different aspects of a variety of diseases, covering everything from the molecular and cellular bases of disease to translational medicine and new therapeutic strategies.
Cold Spring Harbor Perspectives in Medicine is thus unmatched in its depth of coverage and represents an essential source where readers can find informed surveys and critical discussion of advances in molecular medicine.