Zhenjiang Li , Yulian Wang , Zhewei Yang , Jiayun Pang , Lin Song , Chunyan Liu , Junfeng Zhang , Lei Dong
{"title":"药物诱导的供体真皮成纤维细胞衰老促进皮肤移植的血运重建和移植成功。","authors":"Zhenjiang Li , Yulian Wang , Zhewei Yang , Jiayun Pang , Lin Song , Chunyan Liu , Junfeng Zhang , Lei Dong","doi":"10.1016/j.ejphar.2024.177208","DOIUrl":null,"url":null,"abstract":"<div><div>Full-thickness skin grafts often face challenges related to inefficient vascularization in clinical settings. Senescent cells, known for secreting various growth factors, have demonstrated excellent effects on angiogenesis. In this study, we induced senescence in a subset of fibroblasts in the donor dermis by co-administering trametinib and palbociclib before harvesting the skin grafts for transplantation. Grafts containing these senescent fibroblasts showed significant promotion of vascularization when surgically transplanted into recipient animals. This approach resulted in a 100% survival rate of the transplanted skin. Additionally, the senescent fibroblasts optimized wound healing and matrix remodeling, subsequently reducing inflammation and scar hyperplasia. Importantly, these senescent fibroblasts disappeared 14 days post-grafting, preventing excessive accumulation of senescent cells. Overall, our study indicates that inducing senescence in the donor dermis prior to transplantation is an effective strategy to enhance vascularization and increase the success rate of skin grafting.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"987 ","pages":"Article 177208"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drug-induced senescence of donor dermal fibroblasts enhances revascularization and graft success in skin transplantation\",\"authors\":\"Zhenjiang Li , Yulian Wang , Zhewei Yang , Jiayun Pang , Lin Song , Chunyan Liu , Junfeng Zhang , Lei Dong\",\"doi\":\"10.1016/j.ejphar.2024.177208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Full-thickness skin grafts often face challenges related to inefficient vascularization in clinical settings. Senescent cells, known for secreting various growth factors, have demonstrated excellent effects on angiogenesis. In this study, we induced senescence in a subset of fibroblasts in the donor dermis by co-administering trametinib and palbociclib before harvesting the skin grafts for transplantation. Grafts containing these senescent fibroblasts showed significant promotion of vascularization when surgically transplanted into recipient animals. This approach resulted in a 100% survival rate of the transplanted skin. Additionally, the senescent fibroblasts optimized wound healing and matrix remodeling, subsequently reducing inflammation and scar hyperplasia. Importantly, these senescent fibroblasts disappeared 14 days post-grafting, preventing excessive accumulation of senescent cells. Overall, our study indicates that inducing senescence in the donor dermis prior to transplantation is an effective strategy to enhance vascularization and increase the success rate of skin grafting.</div></div>\",\"PeriodicalId\":12004,\"journal\":{\"name\":\"European journal of pharmacology\",\"volume\":\"987 \",\"pages\":\"Article 177208\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European journal of pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014299924008987\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014299924008987","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Drug-induced senescence of donor dermal fibroblasts enhances revascularization and graft success in skin transplantation
Full-thickness skin grafts often face challenges related to inefficient vascularization in clinical settings. Senescent cells, known for secreting various growth factors, have demonstrated excellent effects on angiogenesis. In this study, we induced senescence in a subset of fibroblasts in the donor dermis by co-administering trametinib and palbociclib before harvesting the skin grafts for transplantation. Grafts containing these senescent fibroblasts showed significant promotion of vascularization when surgically transplanted into recipient animals. This approach resulted in a 100% survival rate of the transplanted skin. Additionally, the senescent fibroblasts optimized wound healing and matrix remodeling, subsequently reducing inflammation and scar hyperplasia. Importantly, these senescent fibroblasts disappeared 14 days post-grafting, preventing excessive accumulation of senescent cells. Overall, our study indicates that inducing senescence in the donor dermis prior to transplantation is an effective strategy to enhance vascularization and increase the success rate of skin grafting.
期刊介绍:
The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems.
The scope includes:
Behavioural pharmacology
Neuropharmacology and analgesia
Cardiovascular pharmacology
Pulmonary, gastrointestinal and urogenital pharmacology
Endocrine pharmacology
Immunopharmacology and inflammation
Molecular and cellular pharmacology
Regenerative pharmacology
Biologicals and biotherapeutics
Translational pharmacology
Nutriceutical pharmacology.