仿生星形胶质细胞膜融合纳米囊泡对缺氧缺血性脑病神经血管单位的保护作用。

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Nanobiotechnology Pub Date : 2024-12-19 DOI:10.1186/s12951-024-03053-8
Zihao Liu, Qian Xia, Chanyue Wang, Jiacan Xu, Kangqian Tian, Zhihai Wang, Longji Li, Yuchen Li, Hao Shang, Qian Liu, Tao Xin
{"title":"仿生星形胶质细胞膜融合纳米囊泡对缺氧缺血性脑病神经血管单位的保护作用。","authors":"Zihao Liu, Qian Xia, Chanyue Wang, Jiacan Xu, Kangqian Tian, Zhihai Wang, Longji Li, Yuchen Li, Hao Shang, Qian Liu, Tao Xin","doi":"10.1186/s12951-024-03053-8","DOIUrl":null,"url":null,"abstract":"<p><p>Hypoxic ischemic encephalopathy (HIE) refers to neonatal hypoxic brain injury caused by severe asphyxia during the perinatal period. With a high incidence rate and poor prognosis, HIE accounts for 2.4% of the global disease burden, imposing a heavy burden on families and society. Current clinical treatment for HIE primarily focuses on symptomatic management and supportive care. Therefore, the developments of effective treatment strategies and new drug formulations are critical for improving the prognosis of HIE patients. In order to protect the compromised neurovascular units after HIE, we prepared membrane-fused nanovesicles for delivering rapamycin and si EDN1 (TRCAM@RAPA@si EDN1). Due to the homotypic targeting feature of membrane-fused nanovesicles, we employed astrocyte membranes as synthetic materials to improve the targeting of astrocytes in brain while reducing the clearance of nanovesicles by circulatory system. Additionally, the surface of cell membrane was modified with CXCR3 receptors, enhancing the homing of nanovesicles to infarcted lesions. Lipid vesicles were modified with TK and RVG29 transmembrane peptides, enabling responsive release of internal drugs and blood-brain barrier penetration. Internally loaded rapamycin could promote protective autophagy in astrocytes, improve cellular oxidative stress, while si EDN1 could reduce the expression level of endothelin gene, thereby reducing secondary damage to neurovascular units.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"766"},"PeriodicalIF":10.6000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656965/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biomimetic astrocyte cell membrane-fused nanovesicles for protecting neurovascular units in hypoxic ischemic encephalopathy.\",\"authors\":\"Zihao Liu, Qian Xia, Chanyue Wang, Jiacan Xu, Kangqian Tian, Zhihai Wang, Longji Li, Yuchen Li, Hao Shang, Qian Liu, Tao Xin\",\"doi\":\"10.1186/s12951-024-03053-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hypoxic ischemic encephalopathy (HIE) refers to neonatal hypoxic brain injury caused by severe asphyxia during the perinatal period. With a high incidence rate and poor prognosis, HIE accounts for 2.4% of the global disease burden, imposing a heavy burden on families and society. Current clinical treatment for HIE primarily focuses on symptomatic management and supportive care. Therefore, the developments of effective treatment strategies and new drug formulations are critical for improving the prognosis of HIE patients. In order to protect the compromised neurovascular units after HIE, we prepared membrane-fused nanovesicles for delivering rapamycin and si EDN1 (TRCAM@RAPA@si EDN1). Due to the homotypic targeting feature of membrane-fused nanovesicles, we employed astrocyte membranes as synthetic materials to improve the targeting of astrocytes in brain while reducing the clearance of nanovesicles by circulatory system. Additionally, the surface of cell membrane was modified with CXCR3 receptors, enhancing the homing of nanovesicles to infarcted lesions. Lipid vesicles were modified with TK and RVG29 transmembrane peptides, enabling responsive release of internal drugs and blood-brain barrier penetration. Internally loaded rapamycin could promote protective autophagy in astrocytes, improve cellular oxidative stress, while si EDN1 could reduce the expression level of endothelin gene, thereby reducing secondary damage to neurovascular units.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":\"22 1\",\"pages\":\"766\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656965/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-024-03053-8\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-024-03053-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

缺氧缺血性脑病(HIE)是指围产期严重窒息引起的新生儿缺氧脑损伤。HIE发病率高,预后差,占全球疾病负担的2.4%,给家庭和社会造成沉重负担。目前HIE的临床治疗主要侧重于症状管理和支持性护理。因此,开发有效的治疗策略和新的药物配方对于改善HIE患者的预后至关重要。为了保护HIE后受损的神经血管单位,我们制备了膜融合纳米囊泡,用于递送雷帕霉素和si EDN1 (TRCAM@RAPA@si EDN1)。鉴于膜融合纳米囊泡的同型靶向特性,我们采用星形胶质细胞膜作为合成材料来提高脑内星形胶质细胞的靶向性,同时减少循环系统对纳米囊泡的清除率。此外,细胞膜表面被CXCR3受体修饰,增强了纳米囊泡对梗死灶的归巢。用TK和RVG29跨膜肽修饰脂质囊泡,使内服药物反应性释放和穿透血脑屏障。内载雷帕霉素可促进星形胶质细胞的保护性自噬,改善细胞氧化应激,而si EDN1可降低内皮素基因的表达水平,从而减少神经血管单位的继发性损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biomimetic astrocyte cell membrane-fused nanovesicles for protecting neurovascular units in hypoxic ischemic encephalopathy.

Hypoxic ischemic encephalopathy (HIE) refers to neonatal hypoxic brain injury caused by severe asphyxia during the perinatal period. With a high incidence rate and poor prognosis, HIE accounts for 2.4% of the global disease burden, imposing a heavy burden on families and society. Current clinical treatment for HIE primarily focuses on symptomatic management and supportive care. Therefore, the developments of effective treatment strategies and new drug formulations are critical for improving the prognosis of HIE patients. In order to protect the compromised neurovascular units after HIE, we prepared membrane-fused nanovesicles for delivering rapamycin and si EDN1 (TRCAM@RAPA@si EDN1). Due to the homotypic targeting feature of membrane-fused nanovesicles, we employed astrocyte membranes as synthetic materials to improve the targeting of astrocytes in brain while reducing the clearance of nanovesicles by circulatory system. Additionally, the surface of cell membrane was modified with CXCR3 receptors, enhancing the homing of nanovesicles to infarcted lesions. Lipid vesicles were modified with TK and RVG29 transmembrane peptides, enabling responsive release of internal drugs and blood-brain barrier penetration. Internally loaded rapamycin could promote protective autophagy in astrocytes, improve cellular oxidative stress, while si EDN1 could reduce the expression level of endothelin gene, thereby reducing secondary damage to neurovascular units.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
期刊最新文献
Correction: Ceria nanoparticles ameliorate renal fibrosis by modulating the balance between oxidative phosphorylation and aerobic glycolysis. Polyoxometalate-based injectable coacervate inhibits HCC metastasis after incomplete radiofrequency ablation via scavenging ROS. An antibacterial, antioxidant and hemostatic hydrogel accelerates infectious wound healing. Immunomodulation effects of collagen hydrogel encapsulating extracellular vesicles derived from calcium silicate stimulated-adipose mesenchymal stem cells for diabetic healing. Correction: Enhanced effects of slowly co-released TGF-β3 and BMP-2 from biomimetic calcium phosphate-coated silk fibroin scaffolds in the repair of osteochondral defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1