利用白细胞介素-6和白细胞介素-17信号传导的进化免疫学来治疗肺癌。

IF 4.9 Q1 CHEMISTRY, MEDICINAL ACS Pharmacology and Translational Science Pub Date : 2024-11-22 eCollection Date: 2024-12-13 DOI:10.1021/acsptsci.4c00412
Riya Khilwani, Shailza Singh
{"title":"利用白细胞介素-6和白细胞介素-17信号传导的进化免疫学来治疗肺癌。","authors":"Riya Khilwani, Shailza Singh","doi":"10.1021/acsptsci.4c00412","DOIUrl":null,"url":null,"abstract":"<p><p>Lung cancer is among the most common instances of cancer subtypes and is associated with high mortality rates. Due to the availability of fewer therapies and delayed clinical investigations, the number of cancer incidences is rising dramatically. This is possibly an effect of immune modulations and chemotherapeutic drugs that raises cancer resistance. Among the list, IL-6 and IL-17 are host-derived paradoxical effectors that attune immune responses in malignant lung cells. Their excessive release in the cytokine milieu stabilizes immunosuppressive phenotypes, resulting in cellular perturbations. During tumor development, the significance of these molecules is reflected in their potential to regulate oncogenesis by initiating a myriad of signaling events that influence tumor growth and the metastatic ability of benign cancer cells. Moreover, their transactivation contributes to antiapoptotic mechanisms and favors cancer cell survival via constitutive expression of immunoregulatory molecules. Co-evolution and gene duplication events could be the major drivers behind cytokine evolution, which have prompted generic changes and, hence, the additive effect. The evolutionary model and statistical analysis provide evidence about the cytokines ancestral relationships and site-specific conservation, which is more convincing as both cytokines share cysteine-knot-like structures important in maintaining structural integrity. Funneling through the findings could help find residues that serve a catalytic role in immune functioning. Designing peptides or subunit vaccine formulations against those conserved residues could aid in combating lung cancer pathogenesis.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 12","pages":"3658-3670"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11650734/pdf/","citationCount":"0","resultStr":"{\"title\":\"Leveraging Evolutionary Immunology in Interleukin-6 and Interleukin-17 Signaling for Lung Cancer Therapeutics.\",\"authors\":\"Riya Khilwani, Shailza Singh\",\"doi\":\"10.1021/acsptsci.4c00412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lung cancer is among the most common instances of cancer subtypes and is associated with high mortality rates. Due to the availability of fewer therapies and delayed clinical investigations, the number of cancer incidences is rising dramatically. This is possibly an effect of immune modulations and chemotherapeutic drugs that raises cancer resistance. Among the list, IL-6 and IL-17 are host-derived paradoxical effectors that attune immune responses in malignant lung cells. Their excessive release in the cytokine milieu stabilizes immunosuppressive phenotypes, resulting in cellular perturbations. During tumor development, the significance of these molecules is reflected in their potential to regulate oncogenesis by initiating a myriad of signaling events that influence tumor growth and the metastatic ability of benign cancer cells. Moreover, their transactivation contributes to antiapoptotic mechanisms and favors cancer cell survival via constitutive expression of immunoregulatory molecules. Co-evolution and gene duplication events could be the major drivers behind cytokine evolution, which have prompted generic changes and, hence, the additive effect. The evolutionary model and statistical analysis provide evidence about the cytokines ancestral relationships and site-specific conservation, which is more convincing as both cytokines share cysteine-knot-like structures important in maintaining structural integrity. Funneling through the findings could help find residues that serve a catalytic role in immune functioning. Designing peptides or subunit vaccine formulations against those conserved residues could aid in combating lung cancer pathogenesis.</p>\",\"PeriodicalId\":36426,\"journal\":{\"name\":\"ACS Pharmacology and Translational Science\",\"volume\":\"7 12\",\"pages\":\"3658-3670\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11650734/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Pharmacology and Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsptsci.4c00412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/13 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsptsci.4c00412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/13 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

肺癌是最常见的癌症亚型之一,与高死亡率有关。由于治疗方法的减少和临床调查的延迟,癌症发病率正在急剧上升。这可能是免疫调节和化疗药物提高癌症抵抗力的作用。其中,IL-6和IL-17是宿主衍生的矛盾效应物,可调节恶性肺细胞的免疫反应。它们在细胞因子环境中的过度释放稳定了免疫抑制表型,导致细胞扰动。在肿瘤发展过程中,这些分子的重要性反映在它们通过启动影响肿瘤生长和良性癌细胞转移能力的无数信号事件来调节肿瘤发生的潜力上。此外,它们的反活化有助于抗凋亡机制,并通过免疫调节分子的组成表达促进癌细胞存活。共同进化和基因复制事件可能是细胞因子进化背后的主要驱动因素,它们促进了一般的变化,从而产生了加性效应。进化模型和统计分析为细胞因子的祖先关系和位点特异性保护提供了证据,这更有说服力,因为两种细胞因子都具有维持结构完整性的重要半胱氨酸结样结构。通过这些发现可以帮助找到在免疫功能中起催化作用的残留物。设计针对这些保守残基的肽或亚单位疫苗制剂可能有助于对抗肺癌的发病机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leveraging Evolutionary Immunology in Interleukin-6 and Interleukin-17 Signaling for Lung Cancer Therapeutics.

Lung cancer is among the most common instances of cancer subtypes and is associated with high mortality rates. Due to the availability of fewer therapies and delayed clinical investigations, the number of cancer incidences is rising dramatically. This is possibly an effect of immune modulations and chemotherapeutic drugs that raises cancer resistance. Among the list, IL-6 and IL-17 are host-derived paradoxical effectors that attune immune responses in malignant lung cells. Their excessive release in the cytokine milieu stabilizes immunosuppressive phenotypes, resulting in cellular perturbations. During tumor development, the significance of these molecules is reflected in their potential to regulate oncogenesis by initiating a myriad of signaling events that influence tumor growth and the metastatic ability of benign cancer cells. Moreover, their transactivation contributes to antiapoptotic mechanisms and favors cancer cell survival via constitutive expression of immunoregulatory molecules. Co-evolution and gene duplication events could be the major drivers behind cytokine evolution, which have prompted generic changes and, hence, the additive effect. The evolutionary model and statistical analysis provide evidence about the cytokines ancestral relationships and site-specific conservation, which is more convincing as both cytokines share cysteine-knot-like structures important in maintaining structural integrity. Funneling through the findings could help find residues that serve a catalytic role in immune functioning. Designing peptides or subunit vaccine formulations against those conserved residues could aid in combating lung cancer pathogenesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Pharmacology and Translational Science
ACS Pharmacology and Translational Science Medicine-Pharmacology (medical)
CiteScore
10.00
自引率
3.30%
发文量
133
期刊介绍: ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered. ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition. Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.
期刊最新文献
Molecular and Immunological Properties of a Chimeric Glycosyl Hydrolase 18 Based on Immunoinformatics Approaches: A Design of a New Anti-Leishmania Vaccine. Recommended Opioid Receptor Tool Compounds: Comparative In Vitro for Receptor Selectivity Profiles and In Vivo for Pharmacological Antinociceptive Profiles. Sigma 1 Receptor and Its Pivotal Role in Neurological Disorders. A 3D Model of the Human Lung Airway for Evaluating Permeability of Inhaled Drugs. Safe and Orally Bioavailable Inhibitor of Serine Palmitoyltransferase Improves Age-Related Sarcopenia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1