埃及三叶草(Trifolium alexandrinum)近乎完整的端粒到端粒从头基因组组装。

IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY DNA Research Pub Date : 2024-12-27 DOI:10.1093/dnares/dsae036
Mitsuhiko P Sato, Ramadan A Arafa, Mohamed T Rakha, Amero A Emeran, Sachiko Isobe, Kenta Shirasawa
{"title":"埃及三叶草(Trifolium alexandrinum)近乎完整的端粒到端粒从头基因组组装。","authors":"Mitsuhiko P Sato, Ramadan A Arafa, Mohamed T Rakha, Amero A Emeran, Sachiko Isobe, Kenta Shirasawa","doi":"10.1093/dnares/dsae036","DOIUrl":null,"url":null,"abstract":"<p><p>Egyptian clover (Trifolium alexandrinum L.), also known as berseem clover, is an important forage crop to semi-arid conditions that was domesticated in ancient Egypt in 5,5000 BCE and introduced and well adapted to numerous countries including India, Pakistan, Turkey, and Mediterranean region. Despite its agricultural importance, genomic research on Egyptian clover has been limited to developing efficient modern breeding programs. In the present study, we constructed near-complete telomere-to-telomere-level genome assemblies for 2 Egyptian clover cultivars, Helaly and Fahl. Initial assemblies were established by using highly fidelity long-read technology. To extend sequence contiguity, we developed a gap-targeted sequencing (GAP-Seq) method, in which contig ends are targeted for sequencing to obtain long reads bridging 2 contigs. The total length of the resultant chromosome-level assemblies was 547.7 Mb for Helaly and 536.3 Mb for Fahl. These differences in sequence length can be attributed to the expansion of DNA transposons. Population genomic analysis using single-nucleotide polymorphisms revealed genomic regions highly differentiated between 2 cultivars and increased genetic uniformity within each cultivar. Gene ontologies associated with metabolic and biosynthetic processes and developmental processes were enriched in these genomic regions, indicating that these genes may determine the unique characteristics of each cultivar. Comprehensive genomic resources can provide valuable insights into genetic improvements in Egyptian clover and legume genomics.</p>","PeriodicalId":51014,"journal":{"name":"DNA Research","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11747361/pdf/","citationCount":"0","resultStr":"{\"title\":\"Near-complete telomere-to-telomere de novo genome assembly in Egyptian clover (Trifolium alexandrinum).\",\"authors\":\"Mitsuhiko P Sato, Ramadan A Arafa, Mohamed T Rakha, Amero A Emeran, Sachiko Isobe, Kenta Shirasawa\",\"doi\":\"10.1093/dnares/dsae036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Egyptian clover (Trifolium alexandrinum L.), also known as berseem clover, is an important forage crop to semi-arid conditions that was domesticated in ancient Egypt in 5,5000 BCE and introduced and well adapted to numerous countries including India, Pakistan, Turkey, and Mediterranean region. Despite its agricultural importance, genomic research on Egyptian clover has been limited to developing efficient modern breeding programs. In the present study, we constructed near-complete telomere-to-telomere-level genome assemblies for 2 Egyptian clover cultivars, Helaly and Fahl. Initial assemblies were established by using highly fidelity long-read technology. To extend sequence contiguity, we developed a gap-targeted sequencing (GAP-Seq) method, in which contig ends are targeted for sequencing to obtain long reads bridging 2 contigs. The total length of the resultant chromosome-level assemblies was 547.7 Mb for Helaly and 536.3 Mb for Fahl. These differences in sequence length can be attributed to the expansion of DNA transposons. Population genomic analysis using single-nucleotide polymorphisms revealed genomic regions highly differentiated between 2 cultivars and increased genetic uniformity within each cultivar. Gene ontologies associated with metabolic and biosynthetic processes and developmental processes were enriched in these genomic regions, indicating that these genes may determine the unique characteristics of each cultivar. Comprehensive genomic resources can provide valuable insights into genetic improvements in Egyptian clover and legume genomics.</p>\",\"PeriodicalId\":51014,\"journal\":{\"name\":\"DNA Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11747361/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/dnares/dsae036\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/dnares/dsae036","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

埃及三叶草(Trifolium alexandrinum L.),也被称为三叶草,是一种重要的半干旱条件下的饲料作物,自公元前6000年以来在古埃及被驯化,并被引入并很好地适应了许多国家,包括印度、巴基斯坦、土耳其和地中海地区。尽管埃及三叶草具有重要的农业意义,但其基因组研究仅限于开发高效的现代育种计划。在本研究中,我们构建了两个埃及三叶草品种Helaly和Fahl的近乎完整的端粒到端粒水平基因组组装。初始装配采用高保真长读技术建立。为了扩展序列的连续性,我们开发了一种间隙靶向测序(GAP-Seq)方法,该方法针对序列末端进行测序,以获得连接两个序列的长读段。Helaly和Fahl的总长度分别为547.7 Mb和536.3 Mb。这些序列长度的差异可归因于DNA转座子的扩展。利用单核苷酸多态性进行群体基因组分析表明,两个品种之间的基因组区域高度分化,并且每个品种之间的遗传均一性增加。与代谢和生物合成过程以及发育过程相关的基因本体在这些基因组区域丰富,表明这些基因可能决定了每个品种的独特特征。全面的基因组资源可以为埃及三叶草和豆科植物基因组学的遗传改良提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Near-complete telomere-to-telomere de novo genome assembly in Egyptian clover (Trifolium alexandrinum).

Egyptian clover (Trifolium alexandrinum L.), also known as berseem clover, is an important forage crop to semi-arid conditions that was domesticated in ancient Egypt in 5,5000 BCE and introduced and well adapted to numerous countries including India, Pakistan, Turkey, and Mediterranean region. Despite its agricultural importance, genomic research on Egyptian clover has been limited to developing efficient modern breeding programs. In the present study, we constructed near-complete telomere-to-telomere-level genome assemblies for 2 Egyptian clover cultivars, Helaly and Fahl. Initial assemblies were established by using highly fidelity long-read technology. To extend sequence contiguity, we developed a gap-targeted sequencing (GAP-Seq) method, in which contig ends are targeted for sequencing to obtain long reads bridging 2 contigs. The total length of the resultant chromosome-level assemblies was 547.7 Mb for Helaly and 536.3 Mb for Fahl. These differences in sequence length can be attributed to the expansion of DNA transposons. Population genomic analysis using single-nucleotide polymorphisms revealed genomic regions highly differentiated between 2 cultivars and increased genetic uniformity within each cultivar. Gene ontologies associated with metabolic and biosynthetic processes and developmental processes were enriched in these genomic regions, indicating that these genes may determine the unique characteristics of each cultivar. Comprehensive genomic resources can provide valuable insights into genetic improvements in Egyptian clover and legume genomics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
DNA Research
DNA Research 生物-遗传学
CiteScore
6.00
自引率
4.90%
发文量
39
审稿时长
4.5 months
期刊介绍: DNA Research is an internationally peer-reviewed journal which aims at publishing papers of highest quality in broad aspects of DNA and genome-related research. Emphasis will be made on the following subjects: 1) Sequencing and characterization of genomes/important genomic regions, 2) Comprehensive analysis of the functions of genes, gene families and genomes, 3) Techniques and equipments useful for structural and functional analysis of genes, gene families and genomes, 4) Computer algorithms and/or their applications relevant to structural and functional analysis of genes and genomes. The journal also welcomes novel findings in other scientific disciplines related to genomes.
期刊最新文献
Chromosome-level genome assembly of Pontederia cordata L. provides insights into its rapid adaptation and variation of flower colors. Genome-resolved analysis of Serratia marcescens SMTT infers niche specialization as a hydrocarbon-degrader. A fully phased, chromosome-scale genome of sugar beet line FC309 enables the discovery of Fusarium yellows resistance QTL. The haplotype-phased genome assembly facilitated the deciphering of the bud dormancy-related QTLs in Prunus mume. Near-complete telomere-to-telomere de novo genome assembly in Egyptian clover (Trifolium alexandrinum).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1