Riccardo Adorisio, Davide Ciardiello, Alessandra Rappa, Lorenzo Gervaso, Gloria Pelizzari, Laura Marinucci, Nicola Fusco, Maria Giulia Zampino, Nicola Fazio, Konstantinos Venetis, Elena Guerini-Rocco
{"title":"探讨结直肠癌患者罕见KRAS突变的致病性及其与临床病理特征的关系。","authors":"Riccardo Adorisio, Davide Ciardiello, Alessandra Rappa, Lorenzo Gervaso, Gloria Pelizzari, Laura Marinucci, Nicola Fusco, Maria Giulia Zampino, Nicola Fazio, Konstantinos Venetis, Elena Guerini-Rocco","doi":"10.1016/j.jmoldx.2024.11.007","DOIUrl":null,"url":null,"abstract":"<p><p>Kirsten rat sarcoma viral oncogene homolog (KRAS) somatic mutations occur in 30% to 40% of patients with colorectal cancer (CRC). These were thought to equally affect prognosis and resistance to anti-epidermal growth factor receptor agents; however, recent data show the activity of KRAS-G12C and pan-RAS inhibitors. The effects of uncommon KRAS (uKRAS) variants are largely unexplored. The distribution and pathogenicity of uKRAS mutations and their relationship with patients' clinicopathologic features were assessed. A total of 2427 CRCs were profiled for KRAS using next-generation sequencing (NGS). The study and control groups included patients with uKRAS (<1% frequency in CRC data sets on cBioPortal) and canonical KRAS mutations, respectively. In silico protein structure modifications and prediction analyses were performed by using PyMOL, trRosetta, and PolyPhen-2. uKRAS mutations affected 35 cases (1.5%), with G13C (28.6%), G12R (20%), and V14I (8.6%) being most common. Missense mutations (D33E, G12W, G12F, Q22H, Q61L, and L19F) occurred in nine cases (25.7%). Duplications (G10dup and L52_G60dup) affected two cases. Pathogenicity analyses showed that G12W, Q22R, L56V, and A130I mutations are probably damaging, with scores between 0.928 and 1.000. No differences were seen in clinicopathologic features. uKRAS mutants had lower event-free survival but no difference in overall survival compared with controls. Although these data are hypothesis generating and need further confirmation, they highlight the importance of NGS-based profiling to identify CRC patients with uKRAS mutations as candidates for personalized therapy.</p>","PeriodicalId":50128,"journal":{"name":"Journal of Molecular Diagnostics","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the Pathogenicity of Uncommon KRAS Mutations and Their Association with Clinicopathologic Characteristics in Patients with Colorectal Cancer.\",\"authors\":\"Riccardo Adorisio, Davide Ciardiello, Alessandra Rappa, Lorenzo Gervaso, Gloria Pelizzari, Laura Marinucci, Nicola Fusco, Maria Giulia Zampino, Nicola Fazio, Konstantinos Venetis, Elena Guerini-Rocco\",\"doi\":\"10.1016/j.jmoldx.2024.11.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Kirsten rat sarcoma viral oncogene homolog (KRAS) somatic mutations occur in 30% to 40% of patients with colorectal cancer (CRC). These were thought to equally affect prognosis and resistance to anti-epidermal growth factor receptor agents; however, recent data show the activity of KRAS-G12C and pan-RAS inhibitors. The effects of uncommon KRAS (uKRAS) variants are largely unexplored. The distribution and pathogenicity of uKRAS mutations and their relationship with patients' clinicopathologic features were assessed. A total of 2427 CRCs were profiled for KRAS using next-generation sequencing (NGS). The study and control groups included patients with uKRAS (<1% frequency in CRC data sets on cBioPortal) and canonical KRAS mutations, respectively. In silico protein structure modifications and prediction analyses were performed by using PyMOL, trRosetta, and PolyPhen-2. uKRAS mutations affected 35 cases (1.5%), with G13C (28.6%), G12R (20%), and V14I (8.6%) being most common. Missense mutations (D33E, G12W, G12F, Q22H, Q61L, and L19F) occurred in nine cases (25.7%). Duplications (G10dup and L52_G60dup) affected two cases. Pathogenicity analyses showed that G12W, Q22R, L56V, and A130I mutations are probably damaging, with scores between 0.928 and 1.000. No differences were seen in clinicopathologic features. uKRAS mutants had lower event-free survival but no difference in overall survival compared with controls. Although these data are hypothesis generating and need further confirmation, they highlight the importance of NGS-based profiling to identify CRC patients with uKRAS mutations as candidates for personalized therapy.</p>\",\"PeriodicalId\":50128,\"journal\":{\"name\":\"Journal of Molecular Diagnostics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Diagnostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmoldx.2024.11.007\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jmoldx.2024.11.007","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
Investigating the Pathogenicity of Uncommon KRAS Mutations and Their Association with Clinicopathologic Characteristics in Patients with Colorectal Cancer.
Kirsten rat sarcoma viral oncogene homolog (KRAS) somatic mutations occur in 30% to 40% of patients with colorectal cancer (CRC). These were thought to equally affect prognosis and resistance to anti-epidermal growth factor receptor agents; however, recent data show the activity of KRAS-G12C and pan-RAS inhibitors. The effects of uncommon KRAS (uKRAS) variants are largely unexplored. The distribution and pathogenicity of uKRAS mutations and their relationship with patients' clinicopathologic features were assessed. A total of 2427 CRCs were profiled for KRAS using next-generation sequencing (NGS). The study and control groups included patients with uKRAS (<1% frequency in CRC data sets on cBioPortal) and canonical KRAS mutations, respectively. In silico protein structure modifications and prediction analyses were performed by using PyMOL, trRosetta, and PolyPhen-2. uKRAS mutations affected 35 cases (1.5%), with G13C (28.6%), G12R (20%), and V14I (8.6%) being most common. Missense mutations (D33E, G12W, G12F, Q22H, Q61L, and L19F) occurred in nine cases (25.7%). Duplications (G10dup and L52_G60dup) affected two cases. Pathogenicity analyses showed that G12W, Q22R, L56V, and A130I mutations are probably damaging, with scores between 0.928 and 1.000. No differences were seen in clinicopathologic features. uKRAS mutants had lower event-free survival but no difference in overall survival compared with controls. Although these data are hypothesis generating and need further confirmation, they highlight the importance of NGS-based profiling to identify CRC patients with uKRAS mutations as candidates for personalized therapy.
期刊介绍:
The Journal of Molecular Diagnostics, the official publication of the Association for Molecular Pathology (AMP), co-owned by the American Society for Investigative Pathology (ASIP), seeks to publish high quality original papers on scientific advances in the translation and validation of molecular discoveries in medicine into the clinical diagnostic setting, and the description and application of technological advances in the field of molecular diagnostic medicine. The editors welcome for review articles that contain: novel discoveries or clinicopathologic correlations including studies in oncology, infectious diseases, inherited diseases, predisposition to disease, clinical informatics, or the description of polymorphisms linked to disease states or normal variations; the application of diagnostic methodologies in clinical trials; or the development of new or improved molecular methods which may be applied to diagnosis or monitoring of disease or disease predisposition.