预测具有深度学习潜力的非晶态前体晶体的出现。

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Nature computational science Pub Date : 2024-12-18 DOI:10.1038/s43588-024-00752-y
Muratahan Aykol, Amil Merchant, Simon Batzner, Jennifer N. Wei, Ekin Dogus Cubuk
{"title":"预测具有深度学习潜力的非晶态前体晶体的出现。","authors":"Muratahan Aykol, Amil Merchant, Simon Batzner, Jennifer N. Wei, Ekin Dogus Cubuk","doi":"10.1038/s43588-024-00752-y","DOIUrl":null,"url":null,"abstract":"Crystallization of amorphous precursors into metastable crystals plays a fundamental role in the formation of new matter, from geological to biological processes in nature to the synthesis and development of new materials in the laboratory. Reliably predicting the outcome of such a process would enable new research directions in these areas, but has remained beyond the reach of molecular modeling or ab initio methods. Here we show that candidates for the crystallization products of amorphous precursors can be predicted in many inorganic systems by sampling the local structural motifs at the atomistic level using universal deep learning interatomic potentials. We show that this approach identifies, with high accuracy, the most likely crystal structures of the polymorphs that initially nucleate from amorphous precursors, across a diverse set of material systems, including polymorphic oxides, nitrides, carbides, fluorides, chlorides, chalcogenides and metal alloys. This study introduces a2c, a computational method that leverages machine learning and atomistic simulations to predict the most likely crystallization products upon annealing of amorphous precursors. The a2c tool was demonstrated on a variety of materials, including oxides, nitrides and metallic glasses, and can assist researchers in discovering synthesis pathways for materials design.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"5 2","pages":"105-111"},"PeriodicalIF":12.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43588-024-00752-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Predicting emergence of crystals from amorphous precursors with deep learning potentials\",\"authors\":\"Muratahan Aykol, Amil Merchant, Simon Batzner, Jennifer N. Wei, Ekin Dogus Cubuk\",\"doi\":\"10.1038/s43588-024-00752-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crystallization of amorphous precursors into metastable crystals plays a fundamental role in the formation of new matter, from geological to biological processes in nature to the synthesis and development of new materials in the laboratory. Reliably predicting the outcome of such a process would enable new research directions in these areas, but has remained beyond the reach of molecular modeling or ab initio methods. Here we show that candidates for the crystallization products of amorphous precursors can be predicted in many inorganic systems by sampling the local structural motifs at the atomistic level using universal deep learning interatomic potentials. We show that this approach identifies, with high accuracy, the most likely crystal structures of the polymorphs that initially nucleate from amorphous precursors, across a diverse set of material systems, including polymorphic oxides, nitrides, carbides, fluorides, chlorides, chalcogenides and metal alloys. This study introduces a2c, a computational method that leverages machine learning and atomistic simulations to predict the most likely crystallization products upon annealing of amorphous precursors. The a2c tool was demonstrated on a variety of materials, including oxides, nitrides and metallic glasses, and can assist researchers in discovering synthesis pathways for materials design.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"5 2\",\"pages\":\"105-111\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43588-024-00752-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-024-00752-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00752-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

从自然界的地质过程到生物过程,再到实验室新材料的合成和开发,无定形前体结晶成亚稳晶体对新物质的形成起着至关重要的作用。可靠地预测这一过程的结果将为这些领域提供新的研究方向,但仍然超出了分子建模或从头算方法的范围。在这里,我们证明了非晶前驱体的结晶产物候选物可以在许多无机系统中通过使用通用深度学习原子间势在原子水平上采样局部结构基序来预测。我们表明,这种方法可以高精度地识别出最可能的晶型结构,这些晶型结构最初是由无定形前体形成的,跨越多种材料系统,包括多晶氧化物、氮化物、碳化物、氟化物、氯化物、硫族化物和金属合金。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting emergence of crystals from amorphous precursors with deep learning potentials
Crystallization of amorphous precursors into metastable crystals plays a fundamental role in the formation of new matter, from geological to biological processes in nature to the synthesis and development of new materials in the laboratory. Reliably predicting the outcome of such a process would enable new research directions in these areas, but has remained beyond the reach of molecular modeling or ab initio methods. Here we show that candidates for the crystallization products of amorphous precursors can be predicted in many inorganic systems by sampling the local structural motifs at the atomistic level using universal deep learning interatomic potentials. We show that this approach identifies, with high accuracy, the most likely crystal structures of the polymorphs that initially nucleate from amorphous precursors, across a diverse set of material systems, including polymorphic oxides, nitrides, carbides, fluorides, chlorides, chalcogenides and metal alloys. This study introduces a2c, a computational method that leverages machine learning and atomistic simulations to predict the most likely crystallization products upon annealing of amorphous precursors. The a2c tool was demonstrated on a variety of materials, including oxides, nitrides and metallic glasses, and can assist researchers in discovering synthesis pathways for materials design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
期刊最新文献
Based on the science, diversity matters Enhancing synthesis prediction via machine learning Harnessing large language models for data-scarce learning of polymer properties. A statistical framework for multi-trait rare variant analysis in large-scale whole-genome sequencing studies MultiSTAAR delivers multi-trait rare variant analysis of biobank-scale sequencing data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1