Muratahan Aykol, Amil Merchant, Simon Batzner, Jennifer N. Wei, Ekin Dogus Cubuk
{"title":"预测具有深度学习潜力的非晶态前体晶体的出现。","authors":"Muratahan Aykol, Amil Merchant, Simon Batzner, Jennifer N. Wei, Ekin Dogus Cubuk","doi":"10.1038/s43588-024-00752-y","DOIUrl":null,"url":null,"abstract":"Crystallization of amorphous precursors into metastable crystals plays a fundamental role in the formation of new matter, from geological to biological processes in nature to the synthesis and development of new materials in the laboratory. Reliably predicting the outcome of such a process would enable new research directions in these areas, but has remained beyond the reach of molecular modeling or ab initio methods. Here we show that candidates for the crystallization products of amorphous precursors can be predicted in many inorganic systems by sampling the local structural motifs at the atomistic level using universal deep learning interatomic potentials. We show that this approach identifies, with high accuracy, the most likely crystal structures of the polymorphs that initially nucleate from amorphous precursors, across a diverse set of material systems, including polymorphic oxides, nitrides, carbides, fluorides, chlorides, chalcogenides and metal alloys. This study introduces a2c, a computational method that leverages machine learning and atomistic simulations to predict the most likely crystallization products upon annealing of amorphous precursors. The a2c tool was demonstrated on a variety of materials, including oxides, nitrides and metallic glasses, and can assist researchers in discovering synthesis pathways for materials design.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"5 2","pages":"105-111"},"PeriodicalIF":12.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43588-024-00752-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Predicting emergence of crystals from amorphous precursors with deep learning potentials\",\"authors\":\"Muratahan Aykol, Amil Merchant, Simon Batzner, Jennifer N. Wei, Ekin Dogus Cubuk\",\"doi\":\"10.1038/s43588-024-00752-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crystallization of amorphous precursors into metastable crystals plays a fundamental role in the formation of new matter, from geological to biological processes in nature to the synthesis and development of new materials in the laboratory. Reliably predicting the outcome of such a process would enable new research directions in these areas, but has remained beyond the reach of molecular modeling or ab initio methods. Here we show that candidates for the crystallization products of amorphous precursors can be predicted in many inorganic systems by sampling the local structural motifs at the atomistic level using universal deep learning interatomic potentials. We show that this approach identifies, with high accuracy, the most likely crystal structures of the polymorphs that initially nucleate from amorphous precursors, across a diverse set of material systems, including polymorphic oxides, nitrides, carbides, fluorides, chlorides, chalcogenides and metal alloys. This study introduces a2c, a computational method that leverages machine learning and atomistic simulations to predict the most likely crystallization products upon annealing of amorphous precursors. The a2c tool was demonstrated on a variety of materials, including oxides, nitrides and metallic glasses, and can assist researchers in discovering synthesis pathways for materials design.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"5 2\",\"pages\":\"105-111\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43588-024-00752-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-024-00752-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00752-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Predicting emergence of crystals from amorphous precursors with deep learning potentials
Crystallization of amorphous precursors into metastable crystals plays a fundamental role in the formation of new matter, from geological to biological processes in nature to the synthesis and development of new materials in the laboratory. Reliably predicting the outcome of such a process would enable new research directions in these areas, but has remained beyond the reach of molecular modeling or ab initio methods. Here we show that candidates for the crystallization products of amorphous precursors can be predicted in many inorganic systems by sampling the local structural motifs at the atomistic level using universal deep learning interatomic potentials. We show that this approach identifies, with high accuracy, the most likely crystal structures of the polymorphs that initially nucleate from amorphous precursors, across a diverse set of material systems, including polymorphic oxides, nitrides, carbides, fluorides, chlorides, chalcogenides and metal alloys. This study introduces a2c, a computational method that leverages machine learning and atomistic simulations to predict the most likely crystallization products upon annealing of amorphous precursors. The a2c tool was demonstrated on a variety of materials, including oxides, nitrides and metallic glasses, and can assist researchers in discovering synthesis pathways for materials design.