RoLL+:实时和准确的路由泄漏定位与AS三重特征在规模

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE/ACM Transactions on Networking Pub Date : 2024-09-24 DOI:10.1109/TNET.2024.3458943
Jiang Li;Jiahao Cao;Zili Meng;Renjie Xie;Qi Li;Yuan Yang;Mingwei Xu
{"title":"RoLL+:实时和准确的路由泄漏定位与AS三重特征在规模","authors":"Jiang Li;Jiahao Cao;Zili Meng;Renjie Xie;Qi Li;Yuan Yang;Mingwei Xu","doi":"10.1109/TNET.2024.3458943","DOIUrl":null,"url":null,"abstract":"Border Gateway Protocol (BGP) is the only inter-domain routing protocol that plays an important role on the Internet. However, BGP suffers from route leaks, which can cause serious security threats. To mitigate the effects of route leaks, accurate and timely route leak locating is of great importance. Prior studies leverage AS business relationships to locate route leaks in real time. However, they fail to achieve high locating accuracy. Recent studies apply machine learning to accurately detect route leaks from statistical features of massive BGP messages. Nevertheless, they have high detection latency and cannot further locate route leaks. In this paper, we propose a real-time and accurate route leak locating system named RoLL+. It leverages distinctive AS triplet features to accurately locate AS triplets with route leaks from each BGP message in real time. Considering that RoLL+ may receive a substantial volume of BGP update messages per second, we integrate a cache-like design and a lazy update mechanism into the system to effectively identify route leaks at scale. Our experimental results on real-world BGP route leak data demonstrate that it can achieve 92% locating accuracy with less than 1 ms locating latency. Furthermore, the results show that RoLL+ can process over 7,000 AS triplets per second, meeting real-world throughput requirements.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"5263-5278"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RoLL+: Real-Time and Accurate Route Leak Locating With AS Triplet Features at Scale\",\"authors\":\"Jiang Li;Jiahao Cao;Zili Meng;Renjie Xie;Qi Li;Yuan Yang;Mingwei Xu\",\"doi\":\"10.1109/TNET.2024.3458943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Border Gateway Protocol (BGP) is the only inter-domain routing protocol that plays an important role on the Internet. However, BGP suffers from route leaks, which can cause serious security threats. To mitigate the effects of route leaks, accurate and timely route leak locating is of great importance. Prior studies leverage AS business relationships to locate route leaks in real time. However, they fail to achieve high locating accuracy. Recent studies apply machine learning to accurately detect route leaks from statistical features of massive BGP messages. Nevertheless, they have high detection latency and cannot further locate route leaks. In this paper, we propose a real-time and accurate route leak locating system named RoLL+. It leverages distinctive AS triplet features to accurately locate AS triplets with route leaks from each BGP message in real time. Considering that RoLL+ may receive a substantial volume of BGP update messages per second, we integrate a cache-like design and a lazy update mechanism into the system to effectively identify route leaks at scale. Our experimental results on real-world BGP route leak data demonstrate that it can achieve 92% locating accuracy with less than 1 ms locating latency. Furthermore, the results show that RoLL+ can process over 7,000 AS triplets per second, meeting real-world throughput requirements.\",\"PeriodicalId\":13443,\"journal\":{\"name\":\"IEEE/ACM Transactions on Networking\",\"volume\":\"32 6\",\"pages\":\"5263-5278\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10691928/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10691928/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

边界网关协议(Border Gateway Protocol, BGP)是Internet上唯一一种重要的域间路由协议。但是,BGP存在路由泄漏的问题,路由泄漏会造成严重的安全威胁。为了减轻线路泄漏的影响,准确、及时地定位线路泄漏非常重要。先前的研究利用AS业务关系来实时定位路由泄漏。然而,它们无法达到较高的定位精度。最近的研究将机器学习应用于从大量BGP消息的统计特征中准确检测路由泄漏。然而,它们具有较高的检测延迟,无法进一步定位路由泄漏。本文提出了一种实时准确的航路泄漏定位系统RoLL+。它利用独特的AS三元组特性,实时准确定位每条BGP消息中存在路由泄漏的AS三元组。考虑到RoLL+每秒可能会接收大量的BGP更新消息,我们在系统中集成了类似缓存的设计和延迟更新机制,以有效地识别大规模的路由泄漏。在实际BGP路由泄漏数据上的实验结果表明,该方法在定位延迟小于1 ms的情况下,定位精度达到92%。此外,结果表明RoLL+每秒可以处理超过7,000个AS三元组,满足实际吞吐量需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RoLL+: Real-Time and Accurate Route Leak Locating With AS Triplet Features at Scale
Border Gateway Protocol (BGP) is the only inter-domain routing protocol that plays an important role on the Internet. However, BGP suffers from route leaks, which can cause serious security threats. To mitigate the effects of route leaks, accurate and timely route leak locating is of great importance. Prior studies leverage AS business relationships to locate route leaks in real time. However, they fail to achieve high locating accuracy. Recent studies apply machine learning to accurately detect route leaks from statistical features of massive BGP messages. Nevertheless, they have high detection latency and cannot further locate route leaks. In this paper, we propose a real-time and accurate route leak locating system named RoLL+. It leverages distinctive AS triplet features to accurately locate AS triplets with route leaks from each BGP message in real time. Considering that RoLL+ may receive a substantial volume of BGP update messages per second, we integrate a cache-like design and a lazy update mechanism into the system to effectively identify route leaks at scale. Our experimental results on real-world BGP route leak data demonstrate that it can achieve 92% locating accuracy with less than 1 ms locating latency. Furthermore, the results show that RoLL+ can process over 7,000 AS triplets per second, meeting real-world throughput requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE/ACM Transactions on Networking
IEEE/ACM Transactions on Networking 工程技术-电信学
CiteScore
8.20
自引率
5.40%
发文量
246
审稿时长
4-8 weeks
期刊介绍: The IEEE/ACM Transactions on Networking’s high-level objective is to publish high-quality, original research results derived from theoretical or experimental exploration of the area of communication/computer networking, covering all sorts of information transport networks over all sorts of physical layer technologies, both wireline (all kinds of guided media: e.g., copper, optical) and wireless (e.g., radio-frequency, acoustic (e.g., underwater), infra-red), or hybrids of these. The journal welcomes applied contributions reporting on novel experiences and experiments with actual systems.
期刊最新文献
Table of Contents IEEE/ACM Transactions on Networking Information for Authors IEEE/ACM Transactions on Networking Society Information IEEE/ACM Transactions on Networking Publication Information FPCA: Parasitic Coding Authentication for UAVs by FM Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1