了解微生物合成气发酵速率

IF 3.9 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Applied Microbiology and Biotechnology Pub Date : 2024-12-20 DOI:10.1007/s00253-024-13364-3
Iris Kerkhof, Lars Puiman, Adrie J. J. Straathof
{"title":"了解微生物合成气发酵速率","authors":"Iris Kerkhof,&nbsp;Lars Puiman,&nbsp;Adrie J. J. Straathof","doi":"10.1007/s00253-024-13364-3","DOIUrl":null,"url":null,"abstract":"<p>Syngas fermentation to ethanol has reached industrial production. Further improvement of this process would be aided by quantitative understanding of the influence of imposed reaction conditions on the fermentation performance. That requires a reliable model of the microbial kinetics. Data were collected from 37 steady states in chemostats and from many batch experiments that use <i>Clostridium authoethanogenum</i>. Biomass-specific rates from CO conversion experiments were related to each other according to simple reaction stoichiometries and the Pirt equation, with only the ratio of ethanol to acetate production remaining as degree of freedom. No clear dependency of this ratio on dissolved concentrations, such as CO or acetic acid concentration, was found. This is largely caused by the lack of knowledge about the dependency of the CO uptake rate (and hence all other rates) on the CO concentration. This knowledge gap is caused by a lack of dissolved CO measurements. For dissolved H<sub>2</sub>, a similar gap applies. Modelling H<sub>2</sub> consumption adds more degrees of freedom to the system, so that more structured experiments with H<sub>2</sub> is needed. The inhibition of gas consumption by acetate and ethanol is partly known but needs further study.</p><p><i>• Set of Clostridium autoethanogenum syngas fermentation data from chemostats.</i></p><p><i>• Unstructured kinetic models can relate most biomass-specific rates to dilution rates.</i></p><p><i>• Lack of dissolved gas measurements limits deeper understanding.</i></p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00253-024-13364-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Understanding microbial syngas fermentation rates\",\"authors\":\"Iris Kerkhof,&nbsp;Lars Puiman,&nbsp;Adrie J. J. Straathof\",\"doi\":\"10.1007/s00253-024-13364-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Syngas fermentation to ethanol has reached industrial production. Further improvement of this process would be aided by quantitative understanding of the influence of imposed reaction conditions on the fermentation performance. That requires a reliable model of the microbial kinetics. Data were collected from 37 steady states in chemostats and from many batch experiments that use <i>Clostridium authoethanogenum</i>. Biomass-specific rates from CO conversion experiments were related to each other according to simple reaction stoichiometries and the Pirt equation, with only the ratio of ethanol to acetate production remaining as degree of freedom. No clear dependency of this ratio on dissolved concentrations, such as CO or acetic acid concentration, was found. This is largely caused by the lack of knowledge about the dependency of the CO uptake rate (and hence all other rates) on the CO concentration. This knowledge gap is caused by a lack of dissolved CO measurements. For dissolved H<sub>2</sub>, a similar gap applies. Modelling H<sub>2</sub> consumption adds more degrees of freedom to the system, so that more structured experiments with H<sub>2</sub> is needed. The inhibition of gas consumption by acetate and ethanol is partly known but needs further study.</p><p><i>• Set of Clostridium autoethanogenum syngas fermentation data from chemostats.</i></p><p><i>• Unstructured kinetic models can relate most biomass-specific rates to dilution rates.</i></p><p><i>• Lack of dissolved gas measurements limits deeper understanding.</i></p>\",\"PeriodicalId\":8342,\"journal\":{\"name\":\"Applied Microbiology and Biotechnology\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00253-024-13364-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Microbiology and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00253-024-13364-3\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00253-024-13364-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

合成气发酵制乙醇已实现工业化生产。如果能定量了解施加的反应条件对发酵性能的影响,将有助于进一步改进这一工艺。这就需要一个可靠的微生物动力学模型。我们从恒温器中的 37 个稳定状态以及使用自乙烷梭菌进行的许多批量实验中收集了数据。根据简单的反应化学计量学和皮特方程,一氧化碳转化实验中的生物质特定速率相互关联,只有乙醇和醋酸盐的生产比例仍是自由度。没有发现该比率与溶解浓度(如一氧化碳或醋酸浓度)有明确的关系。这主要是由于缺乏有关一氧化碳吸收率(以及所有其他吸收率)与一氧化碳浓度关系的知识。这一知识空白是由于缺乏对溶解 CO 的测量造成的。对于溶解的 H2,也存在类似的差距。建立 H2 消耗模型增加了系统的自由度,因此需要对 H2 进行更多的结构化实验。醋酸盐和乙醇对气体消耗的抑制作用已部分为人所知,但仍需进一步研究。 - 一组来自恒温器的自乙烷梭菌合成气发酵数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding microbial syngas fermentation rates

Syngas fermentation to ethanol has reached industrial production. Further improvement of this process would be aided by quantitative understanding of the influence of imposed reaction conditions on the fermentation performance. That requires a reliable model of the microbial kinetics. Data were collected from 37 steady states in chemostats and from many batch experiments that use Clostridium authoethanogenum. Biomass-specific rates from CO conversion experiments were related to each other according to simple reaction stoichiometries and the Pirt equation, with only the ratio of ethanol to acetate production remaining as degree of freedom. No clear dependency of this ratio on dissolved concentrations, such as CO or acetic acid concentration, was found. This is largely caused by the lack of knowledge about the dependency of the CO uptake rate (and hence all other rates) on the CO concentration. This knowledge gap is caused by a lack of dissolved CO measurements. For dissolved H2, a similar gap applies. Modelling H2 consumption adds more degrees of freedom to the system, so that more structured experiments with H2 is needed. The inhibition of gas consumption by acetate and ethanol is partly known but needs further study.

• Set of Clostridium autoethanogenum syngas fermentation data from chemostats.

• Unstructured kinetic models can relate most biomass-specific rates to dilution rates.

• Lack of dissolved gas measurements limits deeper understanding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Microbiology and Biotechnology
Applied Microbiology and Biotechnology 工程技术-生物工程与应用微生物
CiteScore
10.00
自引率
4.00%
发文量
535
审稿时长
2 months
期刊介绍: Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.
期刊最新文献
The role of essential oils as eco-friendly strategy to control biofilm collected in the Colosseum (Rome, Italy) From pre-culture to solvent: current trends in Clostridium acetobutylicum cultivation MalS, a periplasmic α-amylase in Escherichia coli, has a binding affinity to glycogen with unique substrate specificities Establishment of one-step duplex TaqMan real-time PCR for detection of feline coronavirus and panleukopenia virus Enhancement of immune responses to classical swine fever virus E2 in mice by fusion or mixture with the porcine IL-28B
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1