微生物接种提高了生物炭改良对作物生产力、土壤健康和微生物群落的影响:一项荟萃分析

Aysha Tapp Ross, Sarah M. Emery
{"title":"微生物接种提高了生物炭改良对作物生产力、土壤健康和微生物群落的影响:一项荟萃分析","authors":"Aysha Tapp Ross,&nbsp;Sarah M. Emery","doi":"10.1002/saj2.20792","DOIUrl":null,"url":null,"abstract":"<p>Biochar as a soil amendment can increase soil carbon sequestration, soil microbial diversity, overall yields, and general soil functioning. To accelerate these effects, biochar is often activated with beneficial soil microbes such as arbuscular mycorrhizal fungi or plant growth promoting bacteria via microbial inocula. However, there has been no comprehensive review of the effects of microbial inoculum additions for biochar amendments. We conducted a meta-analysis to quantify the crop and soil effects of adding biochar alone compared to adding biochar with a microbial inoculum. The meta-analysis included 56 studies and examined whether the effects depended on the source of inoculum, inoculum type, or experiment type. We found that microbial inocula increased soil N and soil organic carbon concentrations and crop productivity compared to adding biochar alone. However, these effects were limited to locally sourced and research-grade inocula, while commercial inoculum products only slightly increased soil P. Fungal inocula had stronger effects than bacterial inocula. Inoculum effects were the strongest in greenhouse studies, increasing N, plant productivity, and fungal abundance, while field studies only increased plant productivity, suggesting that biochar activation with inoculum in on-farm settings may not provide intended positive effects, and thus alternative methods for biochar activation may be needed.</p>","PeriodicalId":101043,"journal":{"name":"Proceedings - Soil Science Society of America","volume":"89 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbial inocula enhance effects of biochar amendments on crop productivity, soil health, and microbial communities: A meta-analysis\",\"authors\":\"Aysha Tapp Ross,&nbsp;Sarah M. Emery\",\"doi\":\"10.1002/saj2.20792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biochar as a soil amendment can increase soil carbon sequestration, soil microbial diversity, overall yields, and general soil functioning. To accelerate these effects, biochar is often activated with beneficial soil microbes such as arbuscular mycorrhizal fungi or plant growth promoting bacteria via microbial inocula. However, there has been no comprehensive review of the effects of microbial inoculum additions for biochar amendments. We conducted a meta-analysis to quantify the crop and soil effects of adding biochar alone compared to adding biochar with a microbial inoculum. The meta-analysis included 56 studies and examined whether the effects depended on the source of inoculum, inoculum type, or experiment type. We found that microbial inocula increased soil N and soil organic carbon concentrations and crop productivity compared to adding biochar alone. However, these effects were limited to locally sourced and research-grade inocula, while commercial inoculum products only slightly increased soil P. Fungal inocula had stronger effects than bacterial inocula. Inoculum effects were the strongest in greenhouse studies, increasing N, plant productivity, and fungal abundance, while field studies only increased plant productivity, suggesting that biochar activation with inoculum in on-farm settings may not provide intended positive effects, and thus alternative methods for biochar activation may be needed.</p>\",\"PeriodicalId\":101043,\"journal\":{\"name\":\"Proceedings - Soil Science Society of America\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings - Soil Science Society of America\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/saj2.20792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings - Soil Science Society of America","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/saj2.20792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物炭作为土壤改良剂可以增加土壤固碳、土壤微生物多样性、总产量和一般土壤功能。为了加速这些效果,生物炭通常被有益的土壤微生物激活,如丛枝菌根真菌或通过微生物接种促进植物生长的细菌。然而,目前还没有对添加微生物接种物对生物炭改性的影响进行全面的综述。我们进行了一项荟萃分析,以量化单独添加生物炭与微生物接种物添加生物炭对作物和土壤的影响。荟萃分析包括56项研究,并检查了影响是否取决于接种源、接种类型或实验类型。研究发现,与单独添加生物炭相比,接种微生物剂可提高土壤氮和土壤有机碳浓度,提高作物生产力。然而,这些影响仅限于本地来源和研究级接种,而商业接种产品仅略微增加土壤P.真菌接种比细菌接种的效果更强。在温室研究中,接种效应最强,增加了氮素、植物生产力和真菌丰度,而实地研究仅提高了植物生产力,这表明在农场环境下用接种物激活生物炭可能不会产生预期的积极效果,因此可能需要其他方法来激活生物炭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microbial inocula enhance effects of biochar amendments on crop productivity, soil health, and microbial communities: A meta-analysis

Biochar as a soil amendment can increase soil carbon sequestration, soil microbial diversity, overall yields, and general soil functioning. To accelerate these effects, biochar is often activated with beneficial soil microbes such as arbuscular mycorrhizal fungi or plant growth promoting bacteria via microbial inocula. However, there has been no comprehensive review of the effects of microbial inoculum additions for biochar amendments. We conducted a meta-analysis to quantify the crop and soil effects of adding biochar alone compared to adding biochar with a microbial inoculum. The meta-analysis included 56 studies and examined whether the effects depended on the source of inoculum, inoculum type, or experiment type. We found that microbial inocula increased soil N and soil organic carbon concentrations and crop productivity compared to adding biochar alone. However, these effects were limited to locally sourced and research-grade inocula, while commercial inoculum products only slightly increased soil P. Fungal inocula had stronger effects than bacterial inocula. Inoculum effects were the strongest in greenhouse studies, increasing N, plant productivity, and fungal abundance, while field studies only increased plant productivity, suggesting that biochar activation with inoculum in on-farm settings may not provide intended positive effects, and thus alternative methods for biochar activation may be needed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new hydraulic barrier with the gradient distribution of fixed net negative charges An empirical equation for sediment transport capacity of overland flow: Integrating slope, discharge, and particle size A short history of astropedology Microscale imaging of phosphate mobility under unsaturated flow as affected by a fertilizer enhancing polymer Mineralization potential of spent coffee grounds and other nutrient sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1