翅片形状和位置对带有双翅片的球形胶囊中相变材料受限熔化的综合影响的数值分析

IF 2.8 Q2 THERMODYNAMICS Heat Transfer Pub Date : 2024-10-07 DOI:10.1002/htj.23196
Akhalesh Sharma, Rohit Kothari, Vivek Saxena, Santosh Kumar Sahu
{"title":"翅片形状和位置对带有双翅片的球形胶囊中相变材料受限熔化的综合影响的数值分析","authors":"Akhalesh Sharma,&nbsp;Rohit Kothari,&nbsp;Vivek Saxena,&nbsp;Santosh Kumar Sahu","doi":"10.1002/htj.23196","DOIUrl":null,"url":null,"abstract":"<p>This study presents a novel approach to investigating the combined influence of fin position and shape on the constrained melting behavior of phase change material (PCM) within a spherical capsule (S.C.) through numerical analysis. Unlike previous research, which predominantly focused on single fin shapes or positions, this work uniquely explores the impact of double, simple, and easily manufacturable fin shapes. A two-dimensional computational model employing the enthalpy–porosity method assesses melting behavior, temperature distribution, and PCM flow. Numerous fin shapes, namely rectangular, trapezoidal converging, trapezoidal diverging stepped, inverse stepped, and triangular, are considered in the analysis. The study reports the influence of the location of two identically shaped fins on the thermal performance. The fins' cross-sectional area and base thickness are kept equal in all cases. The thermal performance of an S.C.-integrated fin system is evaluated by analyzing various attributes such as total saving in the duration of melting, enhancement ratio, and Nusselt number. The results indicate that the position of the fins has a more significant impact on melting performance than the fin shape. The best performance is achieved when fins are placed in the lower half of the capsule, followed by the center and upper halves, regardless of fin shape. For rectangular fins, shifting the position of the fin from the bottom half to the center increases the melting time by 24.7% and the top half by 68.3%. The shortest melting time of 93 min is observed for lower-half rectangular fins, followed by center-placed triangular fins (94 min). This study offers a theoretical foundation for optimizing the performance of different technologies using latent heat thermal energy storage systems such as packed-bed, cascaded thermal energy storage systems.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"54 1","pages":"904-940"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical analysis of the combined influence of fin shape and location on constrained melting of phase change materials in a spherical capsule with double fins\",\"authors\":\"Akhalesh Sharma,&nbsp;Rohit Kothari,&nbsp;Vivek Saxena,&nbsp;Santosh Kumar Sahu\",\"doi\":\"10.1002/htj.23196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study presents a novel approach to investigating the combined influence of fin position and shape on the constrained melting behavior of phase change material (PCM) within a spherical capsule (S.C.) through numerical analysis. Unlike previous research, which predominantly focused on single fin shapes or positions, this work uniquely explores the impact of double, simple, and easily manufacturable fin shapes. A two-dimensional computational model employing the enthalpy–porosity method assesses melting behavior, temperature distribution, and PCM flow. Numerous fin shapes, namely rectangular, trapezoidal converging, trapezoidal diverging stepped, inverse stepped, and triangular, are considered in the analysis. The study reports the influence of the location of two identically shaped fins on the thermal performance. The fins' cross-sectional area and base thickness are kept equal in all cases. The thermal performance of an S.C.-integrated fin system is evaluated by analyzing various attributes such as total saving in the duration of melting, enhancement ratio, and Nusselt number. The results indicate that the position of the fins has a more significant impact on melting performance than the fin shape. The best performance is achieved when fins are placed in the lower half of the capsule, followed by the center and upper halves, regardless of fin shape. For rectangular fins, shifting the position of the fin from the bottom half to the center increases the melting time by 24.7% and the top half by 68.3%. The shortest melting time of 93 min is observed for lower-half rectangular fins, followed by center-placed triangular fins (94 min). This study offers a theoretical foundation for optimizing the performance of different technologies using latent heat thermal energy storage systems such as packed-bed, cascaded thermal energy storage systems.</p>\",\"PeriodicalId\":44939,\"journal\":{\"name\":\"Heat Transfer\",\"volume\":\"54 1\",\"pages\":\"904-940\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/htj.23196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的方法,通过数值分析来研究翅片位置和形状对球形胶囊内相变材料(PCM)约束熔化行为的综合影响。不像以前的研究,主要集中在单一的鳍形状或位置,这项工作独特地探讨了双,简单,易于制造的鳍形状的影响。采用焓孔法的二维计算模型评估熔化行为、温度分布和PCM流动。分析中考虑了矩形、梯形收敛、梯形发散阶跃、反阶跃和三角形等多种鳍形。研究了两个同形翅片的位置对热工性能的影响。在所有情况下,翅片的横截面积和基底厚度保持相等。通过分析各种属性,如熔化持续时间的总节省,增强比和努塞尔数,评估了sc集成鳍系统的热性能。结果表明,翅片的位置比翅片的形状对熔化性能的影响更为显著。无论鳍的形状如何,当鳍放置在胶囊的下半部分时,性能最佳,其次是中心和上半部分。对于矩形翅片,将翅片的位置从下半部分移到中心可以增加24.7%的熔化时间,上半部分增加68.3%。下半部矩形翅片的熔化时间最短,为93 min,其次是中心三角形翅片,为94 min。该研究为优化不同技术的潜热储能系统(如填料床、级联式储能系统)的性能提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical analysis of the combined influence of fin shape and location on constrained melting of phase change materials in a spherical capsule with double fins

This study presents a novel approach to investigating the combined influence of fin position and shape on the constrained melting behavior of phase change material (PCM) within a spherical capsule (S.C.) through numerical analysis. Unlike previous research, which predominantly focused on single fin shapes or positions, this work uniquely explores the impact of double, simple, and easily manufacturable fin shapes. A two-dimensional computational model employing the enthalpy–porosity method assesses melting behavior, temperature distribution, and PCM flow. Numerous fin shapes, namely rectangular, trapezoidal converging, trapezoidal diverging stepped, inverse stepped, and triangular, are considered in the analysis. The study reports the influence of the location of two identically shaped fins on the thermal performance. The fins' cross-sectional area and base thickness are kept equal in all cases. The thermal performance of an S.C.-integrated fin system is evaluated by analyzing various attributes such as total saving in the duration of melting, enhancement ratio, and Nusselt number. The results indicate that the position of the fins has a more significant impact on melting performance than the fin shape. The best performance is achieved when fins are placed in the lower half of the capsule, followed by the center and upper halves, regardless of fin shape. For rectangular fins, shifting the position of the fin from the bottom half to the center increases the melting time by 24.7% and the top half by 68.3%. The shortest melting time of 93 min is observed for lower-half rectangular fins, followed by center-placed triangular fins (94 min). This study offers a theoretical foundation for optimizing the performance of different technologies using latent heat thermal energy storage systems such as packed-bed, cascaded thermal energy storage systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
期刊最新文献
Issue Information Numerical Study on the Effect of Trapezoidal-Wave Shaped Partition on Natural Convection Flow Within a Porous Enclosure Investigation of Atomized Droplet Characteristics and Heat Transfer Performance in Minimum Quantity Lubrication Cutting Technology Implementation of a Realistic Multicell CFD Model to Investigate the Thermal Characteristics Within a Solar PV Module Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1