有机质组成和水化学计量学是地中海源流异养硝酸盐吸收的主要驱动因素

IF 3.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Journal of Geophysical Research: Biogeosciences Pub Date : 2024-12-06 DOI:10.1029/2024JG008346
Xavi Peñarroya, Núria Catalán, Anna Freixa, Anna Lupon, Xavier Triadó-Margarit, Eugènia Martí, Montserrat Soler, Emili O. Casamayor, Susana Bernal
{"title":"有机质组成和水化学计量学是地中海源流异养硝酸盐吸收的主要驱动因素","authors":"Xavi Peñarroya,&nbsp;Núria Catalán,&nbsp;Anna Freixa,&nbsp;Anna Lupon,&nbsp;Xavier Triadó-Margarit,&nbsp;Eugènia Martí,&nbsp;Montserrat Soler,&nbsp;Emili O. Casamayor,&nbsp;Susana Bernal","doi":"10.1029/2024JG008346","DOIUrl":null,"url":null,"abstract":"<p>Heterotrophic bacteria can contribute to improve stream water quality by taking up nitrate (NO<sub>3</sub><sup>−</sup>) from the water column, although microbial demand for this nutrient is usually lower than for other inorganic nitrogen (N) forms, such as ammonium. Heterotrophic NO<sub>3</sub><sup>−</sup> uptake has been related to the availability of dissolved organic carbon (DOC) relative to nutrients (i.e., DOC: nutrients ratios). Yet, how dissolved organic matter (DOM) composition and specific microbial assemblages influence NO<sub>3</sub><sup>−</sup> uptake remains poorly understood. We conducted laboratory incubations to investigate heterotrophic NO<sub>3</sub><sup>−</sup> uptake kinetics in 9 Mediterranean freshwater ecosystems, primarily headwater streams, exhibiting wide variation in DOC:NO<sub>3</sub> ratios (from 1.5 to 750). Moreover, we characterized DOM composition using spectroscopic indexes and its degradation via a reactivity continuum model approach. Microbial community composition and functioning were assessed by analyzing extracellular enzymatic activities and the potential abundance of N-cycling genes. Our results revealed that NO<sub>3</sub><sup>−</sup> uptake rates (<i>k</i><sub>NO3</sub>) were positively related with DOC:NO<sub>3</sub> ratios (<i>r</i><sup><i>2</i></sup> = 0.4) and to NO<sub>3</sub>:SRP ratios as well (<i>r</i><sup>2</sup> = 0.6). Furthermore, <i>k</i><sub>NO3</sub> was negatively correlated to the humification index (<i>r</i><sup><i>2</i></sup> = 0.7), suggesting that a higher proportion of humic-like compounds slow down heterotrophic NO<sub>3</sub><sup>−</sup> uptake. A partial least squares regression model (PLS) pinpointed that DOC and nutrient stoichiometry, DOM composition and reactivity, and microbial composition and activity collectively contributed to explain the variability in <i>k</i><sub>NO3</sub> observed across treatments. Our findings suggest that heterotrophic NO<sub>3</sub><sup>−</sup> uptake may show significant responsiveness to shifts toward more labile DOM sources and nutrient imbalances induced by global change.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"129 12","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008346","citationCount":"0","resultStr":"{\"title\":\"Organic Matter Composition and Water Stoichiometry Are Main Drivers of Heterotrophic Nitrate Uptake in Mediterranean Headwater Streams\",\"authors\":\"Xavi Peñarroya,&nbsp;Núria Catalán,&nbsp;Anna Freixa,&nbsp;Anna Lupon,&nbsp;Xavier Triadó-Margarit,&nbsp;Eugènia Martí,&nbsp;Montserrat Soler,&nbsp;Emili O. Casamayor,&nbsp;Susana Bernal\",\"doi\":\"10.1029/2024JG008346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Heterotrophic bacteria can contribute to improve stream water quality by taking up nitrate (NO<sub>3</sub><sup>−</sup>) from the water column, although microbial demand for this nutrient is usually lower than for other inorganic nitrogen (N) forms, such as ammonium. Heterotrophic NO<sub>3</sub><sup>−</sup> uptake has been related to the availability of dissolved organic carbon (DOC) relative to nutrients (i.e., DOC: nutrients ratios). Yet, how dissolved organic matter (DOM) composition and specific microbial assemblages influence NO<sub>3</sub><sup>−</sup> uptake remains poorly understood. We conducted laboratory incubations to investigate heterotrophic NO<sub>3</sub><sup>−</sup> uptake kinetics in 9 Mediterranean freshwater ecosystems, primarily headwater streams, exhibiting wide variation in DOC:NO<sub>3</sub> ratios (from 1.5 to 750). Moreover, we characterized DOM composition using spectroscopic indexes and its degradation via a reactivity continuum model approach. Microbial community composition and functioning were assessed by analyzing extracellular enzymatic activities and the potential abundance of N-cycling genes. Our results revealed that NO<sub>3</sub><sup>−</sup> uptake rates (<i>k</i><sub>NO3</sub>) were positively related with DOC:NO<sub>3</sub> ratios (<i>r</i><sup><i>2</i></sup> = 0.4) and to NO<sub>3</sub>:SRP ratios as well (<i>r</i><sup>2</sup> = 0.6). Furthermore, <i>k</i><sub>NO3</sub> was negatively correlated to the humification index (<i>r</i><sup><i>2</i></sup> = 0.7), suggesting that a higher proportion of humic-like compounds slow down heterotrophic NO<sub>3</sub><sup>−</sup> uptake. A partial least squares regression model (PLS) pinpointed that DOC and nutrient stoichiometry, DOM composition and reactivity, and microbial composition and activity collectively contributed to explain the variability in <i>k</i><sub>NO3</sub> observed across treatments. Our findings suggest that heterotrophic NO<sub>3</sub><sup>−</sup> uptake may show significant responsiveness to shifts toward more labile DOM sources and nutrient imbalances induced by global change.</p>\",\"PeriodicalId\":16003,\"journal\":{\"name\":\"Journal of Geophysical Research: Biogeosciences\",\"volume\":\"129 12\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008346\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Biogeosciences\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008346\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008346","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

异养细菌可以通过从水柱中吸收硝酸盐(NO3−)来改善溪流水质,尽管微生物对这种营养物质的需求通常低于其他无机氮(N)形式,如铵。异养NO3−吸收与溶解有机碳(DOC)相对于营养物的有效性(即DOC:营养物比率)有关。然而,溶解有机物(DOM)组成和特定微生物组合如何影响NO3−吸收仍然知之甚少。我们通过实验室孵育研究了9个地中海淡水生态系统(主要是水源溪流)的异养NO3−吸收动力学,这些生态系统的DOC:NO3比率变化很大(从1.5到750)。此外,我们利用光谱指数表征了DOM的组成,并通过反应性连续体模型方法表征了DOM的降解。通过分析细胞外酶活性和n循环基因的潜在丰度来评估微生物群落的组成和功能。结果表明,NO3 -吸收率(kNO3)与DOC:NO3比值呈正相关(r2 = 0.4),与NO3:SRP比值呈正相关(r2 = 0.6)。此外,kNO3与腐殖质化指数呈负相关(r2 = 0.7),表明较高比例的腐殖质样化合物减缓了异养NO3−吸收。偏最小二乘回归模型(PLS)指出,DOC和营养化学计量学、DOM组成和反应性以及微生物组成和活性共同解释了不同处理下观察到的kNO3的变异。我们的研究结果表明,异养NO3−摄取可能对全球变化引起的更不稳定的DOM来源和营养失衡表现出显著的响应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Organic Matter Composition and Water Stoichiometry Are Main Drivers of Heterotrophic Nitrate Uptake in Mediterranean Headwater Streams

Heterotrophic bacteria can contribute to improve stream water quality by taking up nitrate (NO3) from the water column, although microbial demand for this nutrient is usually lower than for other inorganic nitrogen (N) forms, such as ammonium. Heterotrophic NO3 uptake has been related to the availability of dissolved organic carbon (DOC) relative to nutrients (i.e., DOC: nutrients ratios). Yet, how dissolved organic matter (DOM) composition and specific microbial assemblages influence NO3 uptake remains poorly understood. We conducted laboratory incubations to investigate heterotrophic NO3 uptake kinetics in 9 Mediterranean freshwater ecosystems, primarily headwater streams, exhibiting wide variation in DOC:NO3 ratios (from 1.5 to 750). Moreover, we characterized DOM composition using spectroscopic indexes and its degradation via a reactivity continuum model approach. Microbial community composition and functioning were assessed by analyzing extracellular enzymatic activities and the potential abundance of N-cycling genes. Our results revealed that NO3 uptake rates (kNO3) were positively related with DOC:NO3 ratios (r2 = 0.4) and to NO3:SRP ratios as well (r2 = 0.6). Furthermore, kNO3 was negatively correlated to the humification index (r2 = 0.7), suggesting that a higher proportion of humic-like compounds slow down heterotrophic NO3 uptake. A partial least squares regression model (PLS) pinpointed that DOC and nutrient stoichiometry, DOM composition and reactivity, and microbial composition and activity collectively contributed to explain the variability in kNO3 observed across treatments. Our findings suggest that heterotrophic NO3 uptake may show significant responsiveness to shifts toward more labile DOM sources and nutrient imbalances induced by global change.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Biogeosciences
Journal of Geophysical Research: Biogeosciences Earth and Planetary Sciences-Paleontology
CiteScore
6.60
自引率
5.40%
发文量
242
期刊介绍: JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology
期刊最新文献
Thermal Adaptation of Enzyme-Mediated Processes Reduces Simulated Soil CO2 Fluxes Upon Soil Warming Spectral Induced Polarization Response of Bacteria Growth and Decay in Soil Column Experiments Controls on Lake Pelagic Primary Productivity: Formalizing the Nutrient-Color Paradigm Patterns of Carbon and Nitrogen Accumulation in Seagrass (Posidonia oceanica) Meadows of the Eastern Mediterranean Sea Seasonal Differences in Vegetation Susceptibility to Soil Drought During 2001–2021
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1