{"title":"孟加拉湾季风海岸上升流信号为何减弱?","authors":"Kathleen Abbott, Amala Mahadevan","doi":"10.1029/2024JC022023","DOIUrl":null,"url":null,"abstract":"<p>The Indian summer monsoon, which brings heavy precipitation to the densely populated Indian subcontinent, plays an important role in the development of a coastal upwelling circulation that brings colder, nutrient-rich water to the surface. Although the western shores of the Arabian Sea (AS) and Bay of Bengal (BoB) both experience upwelling-favorable winds during June-August, only the AS coastline exhibits significant surface cooling. In contrast, the BoB remains warm and its upwelling is characterized by a transient, weak sea surface temperature (SST) response confined to the east coast of India. A weaker mean alongshore wind stress and coastal circulation do not sufficiently explain the lack of SST response in the BoB. Here, we examine other reasons for the differing behavior of these two coastal margins. Firstly, we show that while winds are persistently upwelling-favorable in the western AS, intraseasonal wind variability in the BoB induces intermittent upwelling. Secondly, the vertical density stratification is controlled by salinity in the BoB, and upwelled waters are saltier, but only marginally cooler than surface waters. By contrast, the density in the AS is temperature-controlled, and upwelled waters are substantially colder than the surface. Additionally, satellite-based SST in the BoB does not adequately resolve the upwelling signal. Using a numerical model, we find that salinity stratification has a greater influence on the mean SST, while wind frequency alters near-shore SST and its temporal variability. This work has implications for the sensitivity of upwelling regions and their response to wind stress and stratification in a warming climate.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"129 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JC022023","citationCount":"0","resultStr":"{\"title\":\"Why Is the Monsoon Coastal Upwelling Signal Subdued in the Bay of Bengal?\",\"authors\":\"Kathleen Abbott, Amala Mahadevan\",\"doi\":\"10.1029/2024JC022023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Indian summer monsoon, which brings heavy precipitation to the densely populated Indian subcontinent, plays an important role in the development of a coastal upwelling circulation that brings colder, nutrient-rich water to the surface. Although the western shores of the Arabian Sea (AS) and Bay of Bengal (BoB) both experience upwelling-favorable winds during June-August, only the AS coastline exhibits significant surface cooling. In contrast, the BoB remains warm and its upwelling is characterized by a transient, weak sea surface temperature (SST) response confined to the east coast of India. A weaker mean alongshore wind stress and coastal circulation do not sufficiently explain the lack of SST response in the BoB. Here, we examine other reasons for the differing behavior of these two coastal margins. Firstly, we show that while winds are persistently upwelling-favorable in the western AS, intraseasonal wind variability in the BoB induces intermittent upwelling. Secondly, the vertical density stratification is controlled by salinity in the BoB, and upwelled waters are saltier, but only marginally cooler than surface waters. By contrast, the density in the AS is temperature-controlled, and upwelled waters are substantially colder than the surface. Additionally, satellite-based SST in the BoB does not adequately resolve the upwelling signal. Using a numerical model, we find that salinity stratification has a greater influence on the mean SST, while wind frequency alters near-shore SST and its temporal variability. This work has implications for the sensitivity of upwelling regions and their response to wind stress and stratification in a warming climate.</p>\",\"PeriodicalId\":54340,\"journal\":{\"name\":\"Journal of Geophysical Research-Oceans\",\"volume\":\"129 12\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JC022023\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research-Oceans\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JC022023\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC022023","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
摘要
印度夏季季风给人口稠密的印度次大陆带来了大量降水,对沿岸上升流环流的发展起着重要作用,这种环流将富含营养物质的冷水带到海面。虽然阿拉伯海(AS)和孟加拉湾(BoB)的西岸在 6-8 月间都出现了有利于上升流的风,但只有阿拉伯海沿岸表现出明显的表层冷却。相比之下,孟加拉湾仍然温暖,其上升流的特点是瞬时、微弱的海面温度(SST)反应,仅限于印度东海岸。较弱的平均沿岸风压和沿岸环流不足以解释 BoB 缺乏 SST 反应的原因。在这里,我们研究了造成这两个沿岸边缘不同行为的其他原因。首先,我们表明,虽然 AS 西部的风持续有利于上升流,但 BoB 的季内风变化会引起间歇性的上升流。其次,BoB 的垂直密度分层受盐度控制,上升流水域的盐度较高,但温度仅略低于表层水域。相比之下,AS 的密度受温度控制,上涌水域的温度大大低于表层水域。此外,基于卫星的 BoB SST 并不能充分解析上升流信号。利用数值模型,我们发现盐度分层对平均海温的影响更大,而风频则会改变近岸海温及其时间变化。这项工作对上升流区域的敏感性及其在气候变暖时对风压和分层的响应具有重要意义。
Why Is the Monsoon Coastal Upwelling Signal Subdued in the Bay of Bengal?
The Indian summer monsoon, which brings heavy precipitation to the densely populated Indian subcontinent, plays an important role in the development of a coastal upwelling circulation that brings colder, nutrient-rich water to the surface. Although the western shores of the Arabian Sea (AS) and Bay of Bengal (BoB) both experience upwelling-favorable winds during June-August, only the AS coastline exhibits significant surface cooling. In contrast, the BoB remains warm and its upwelling is characterized by a transient, weak sea surface temperature (SST) response confined to the east coast of India. A weaker mean alongshore wind stress and coastal circulation do not sufficiently explain the lack of SST response in the BoB. Here, we examine other reasons for the differing behavior of these two coastal margins. Firstly, we show that while winds are persistently upwelling-favorable in the western AS, intraseasonal wind variability in the BoB induces intermittent upwelling. Secondly, the vertical density stratification is controlled by salinity in the BoB, and upwelled waters are saltier, but only marginally cooler than surface waters. By contrast, the density in the AS is temperature-controlled, and upwelled waters are substantially colder than the surface. Additionally, satellite-based SST in the BoB does not adequately resolve the upwelling signal. Using a numerical model, we find that salinity stratification has a greater influence on the mean SST, while wind frequency alters near-shore SST and its temporal variability. This work has implications for the sensitivity of upwelling regions and their response to wind stress and stratification in a warming climate.