5G协同频谱共享环境下MIMO NOMA PD方法优化频谱效率

IF 1.7 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Communication Systems Pub Date : 2024-12-18 DOI:10.1002/dac.6073
G. Gnana Priya, K. Balasubadra
{"title":"5G协同频谱共享环境下MIMO NOMA PD方法优化频谱效率","authors":"G. Gnana Priya,&nbsp;K. Balasubadra","doi":"10.1002/dac.6073","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The fifth generation (5G) of cellular communication networks has introduced various advanced technologies to address the increasing demand for higher data rates and improved spectrum utilization. One of these technologies, non-orthogonal multiple access (NOMA), has gained significant attention due to its ability to enhance spectral efficiency by allowing multiple users to share the same time-frequency resource block. NOMA affords a number of advantageous features including increased spectrum efficiency (SE). It comes in various forms, such as power-domain (PD) NOMA and code-domain (CD) NOMA. This paper attentions mainly on enhancing the SE of downlink (DL) PD-NOMA in a 5G cooperative spectrum sharing environment using single input single output (SISO), massive MIMO (M-MIMO), and multiple input multiple output (MIMO). Two methods are approached here. In the first one, the NOMA handlers access the free/unconstrained channels using competing channel (C-Ch) approach, whereas the next one uses dedicated channel (D-Ch) approach. Five users are considered at distances of 1000, 800, 600, 400, and 200 m from the base station (BS) with different power allocation coefficients at transmitting power of 40 dBm and bandwidth of 70 MHz. Quadrature phase shift keying (QPSK) is used with successive interference cancellation (SIC) at the receiver side and superposition coding (SC) at the transmitter side under frequency selective Rayleigh fading environment. The PD DL NOMA system's results demonstrated that combining 32 × 32 MIMO, 64 × 64 MIMO, and 128 × 128 M-MIMO in a single cell and the same network with cooperative cognitive radio network (CoCRN) significantly improved the SE reliability. The user Ur5 produces an optimal SE performance of 3.753 bps/Hz/cell for PD DL NOMA with SISO, 5.77 bps/Hz/cell for CoCRN PD DL NOMA with SISO using C-Ch, and 7.45 bps/Hz/cell for CoCRN DL PDNOMA with SISO using D-Ch with a 40 dBm transmitting power. Furthermore, the SE for Ur5 (nearest user) was increased to 64%, 67%, and 69%, respectively, using PD-NOMA with 32 × 32 MIMO, PD-NOMA with 32 × 32 MIMO using C-Ch, and DL NOMA PD with 32 × 32 MIMO using D-Ch. DL PD-NOMA with MIMO(64 × 64) using D-Ch improved the SE rate by 77% having transmission power of 40 dBm in comparison with the SE outcome for DL PDNOMA with SISO; however, DL PD-NOMA with MIMO (64 × 64) most dramatically upgraded the SE rate for Ur5 by 73%. Using C-Ch and CoCRN DL PD-NOMA with MIMO (64 × 64), the SE performance was boosted by 76%. The best user, Ur5, had an 82% improvement in SE performance when DL PD-NOMA with M-MIMO (128 × 128) was compared to DL NOMA with SISO. With a 40 dBm transmission power, CoCRN DL NOMA with 128 × 128 M-MIMO using C-Ch showed an 88% improvement, whereas CoCRN DL PD-NOMA with M-MIMO (128 × 128) using D-Ch experienced an 89% improvement.</p>\n </div>","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":"38 2","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Spectrum Efficiency With MIMO NOMA PD Approach in a 5G Cooperative Spectrum Sharing Environment\",\"authors\":\"G. Gnana Priya,&nbsp;K. Balasubadra\",\"doi\":\"10.1002/dac.6073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The fifth generation (5G) of cellular communication networks has introduced various advanced technologies to address the increasing demand for higher data rates and improved spectrum utilization. One of these technologies, non-orthogonal multiple access (NOMA), has gained significant attention due to its ability to enhance spectral efficiency by allowing multiple users to share the same time-frequency resource block. NOMA affords a number of advantageous features including increased spectrum efficiency (SE). It comes in various forms, such as power-domain (PD) NOMA and code-domain (CD) NOMA. This paper attentions mainly on enhancing the SE of downlink (DL) PD-NOMA in a 5G cooperative spectrum sharing environment using single input single output (SISO), massive MIMO (M-MIMO), and multiple input multiple output (MIMO). Two methods are approached here. In the first one, the NOMA handlers access the free/unconstrained channels using competing channel (C-Ch) approach, whereas the next one uses dedicated channel (D-Ch) approach. Five users are considered at distances of 1000, 800, 600, 400, and 200 m from the base station (BS) with different power allocation coefficients at transmitting power of 40 dBm and bandwidth of 70 MHz. Quadrature phase shift keying (QPSK) is used with successive interference cancellation (SIC) at the receiver side and superposition coding (SC) at the transmitter side under frequency selective Rayleigh fading environment. The PD DL NOMA system's results demonstrated that combining 32 × 32 MIMO, 64 × 64 MIMO, and 128 × 128 M-MIMO in a single cell and the same network with cooperative cognitive radio network (CoCRN) significantly improved the SE reliability. The user Ur5 produces an optimal SE performance of 3.753 bps/Hz/cell for PD DL NOMA with SISO, 5.77 bps/Hz/cell for CoCRN PD DL NOMA with SISO using C-Ch, and 7.45 bps/Hz/cell for CoCRN DL PDNOMA with SISO using D-Ch with a 40 dBm transmitting power. Furthermore, the SE for Ur5 (nearest user) was increased to 64%, 67%, and 69%, respectively, using PD-NOMA with 32 × 32 MIMO, PD-NOMA with 32 × 32 MIMO using C-Ch, and DL NOMA PD with 32 × 32 MIMO using D-Ch. DL PD-NOMA with MIMO(64 × 64) using D-Ch improved the SE rate by 77% having transmission power of 40 dBm in comparison with the SE outcome for DL PDNOMA with SISO; however, DL PD-NOMA with MIMO (64 × 64) most dramatically upgraded the SE rate for Ur5 by 73%. Using C-Ch and CoCRN DL PD-NOMA with MIMO (64 × 64), the SE performance was boosted by 76%. The best user, Ur5, had an 82% improvement in SE performance when DL PD-NOMA with M-MIMO (128 × 128) was compared to DL NOMA with SISO. With a 40 dBm transmission power, CoCRN DL NOMA with 128 × 128 M-MIMO using C-Ch showed an 88% improvement, whereas CoCRN DL PD-NOMA with M-MIMO (128 × 128) using D-Ch experienced an 89% improvement.</p>\\n </div>\",\"PeriodicalId\":13946,\"journal\":{\"name\":\"International Journal of Communication Systems\",\"volume\":\"38 2\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Communication Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dac.6073\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dac.6073","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

第五代(5G)蜂窝通信网络引入了各种先进技术,以满足对更高数据速率和改进频谱利用率日益增长的需求。其中一项技术,非正交多址(NOMA),由于其允许多个用户共享相同的时频资源块,从而提高频谱效率的能力而受到了极大的关注。NOMA提供了许多有利的特性,包括提高频谱效率(SE)。它有多种形式,例如功率域(PD) NOMA和代码域(CD) NOMA。本文主要研究了5G协同频谱共享环境下,采用单输入单输出(SISO)、大规模MIMO (M-MIMO)和多输入多输出(MIMO)三种方式增强下行链路PD-NOMA的SE。这里有两种方法。在第一个中,NOMA处理程序使用竞争通道(C-Ch)方法访问自由/不受约束的通道,而下一个使用专用通道(D-Ch)方法。在发射功率为40dbm,带宽为70mhz的情况下,分别考虑距离基站1000m、800m、600m、400m和200m的5个用户,功率分配系数不同。在频率选择性瑞利衰落环境下,采用接收端连续干扰抵消(SIC)和发送端叠加编码(SC)的正交相移键控技术。PD DL NOMA系统的实验结果表明,将32 × 32 MIMO、64 × 64 MIMO和128 × 128 M-MIMO与协同认知无线电网络(CoCRN)在同一个小区内组合,显著提高了SE可靠性。用户Ur5产生的最佳SE性能为:带SISO的PD DL NOMA为3.753 bps/Hz/cell,带C-Ch的CoCRN PD DL NOMA为5.77 bps/Hz/cell,带SISO的CoCRN DL PDNOMA为7.45 bps/Hz/cell,带40 dBm发射功率的D-Ch。此外,使用32 × 32 MIMO的PD-NOMA、使用C-Ch的32 × 32 MIMO的PD-NOMA和使用D-Ch的32 × 32 MIMO的DL -NOMA PD对Ur5(最近用户)的SE分别提高到64%、67%和69%。使用D-Ch的MIMO(64 × 64)的DL PD-NOMA在传输功率为40 dBm的情况下,与使用SISO的DL PDNOMA相比,SE率提高了77%;然而,带MIMO (64 × 64)的DL PD-NOMA最显著地将Ur5的SE率提高了73%。使用C-Ch和CoCRN DL PD-NOMA与MIMO (64 × 64), SE性能提高了76%。当DL PD-NOMA与M-MIMO (128 × 128)相比,DL NOMA与SISO相比,最佳用户Ur5的SE性能提高了82%。在40 dBm的传输功率下,采用C-Ch的128 × 128 M-MIMO的CoCRN DL NOMA的传输效率提高了88%,而采用D-Ch的128 × 128 M-MIMO的CoCRN DL PD-NOMA的传输效率提高了89%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing Spectrum Efficiency With MIMO NOMA PD Approach in a 5G Cooperative Spectrum Sharing Environment

The fifth generation (5G) of cellular communication networks has introduced various advanced technologies to address the increasing demand for higher data rates and improved spectrum utilization. One of these technologies, non-orthogonal multiple access (NOMA), has gained significant attention due to its ability to enhance spectral efficiency by allowing multiple users to share the same time-frequency resource block. NOMA affords a number of advantageous features including increased spectrum efficiency (SE). It comes in various forms, such as power-domain (PD) NOMA and code-domain (CD) NOMA. This paper attentions mainly on enhancing the SE of downlink (DL) PD-NOMA in a 5G cooperative spectrum sharing environment using single input single output (SISO), massive MIMO (M-MIMO), and multiple input multiple output (MIMO). Two methods are approached here. In the first one, the NOMA handlers access the free/unconstrained channels using competing channel (C-Ch) approach, whereas the next one uses dedicated channel (D-Ch) approach. Five users are considered at distances of 1000, 800, 600, 400, and 200 m from the base station (BS) with different power allocation coefficients at transmitting power of 40 dBm and bandwidth of 70 MHz. Quadrature phase shift keying (QPSK) is used with successive interference cancellation (SIC) at the receiver side and superposition coding (SC) at the transmitter side under frequency selective Rayleigh fading environment. The PD DL NOMA system's results demonstrated that combining 32 × 32 MIMO, 64 × 64 MIMO, and 128 × 128 M-MIMO in a single cell and the same network with cooperative cognitive radio network (CoCRN) significantly improved the SE reliability. The user Ur5 produces an optimal SE performance of 3.753 bps/Hz/cell for PD DL NOMA with SISO, 5.77 bps/Hz/cell for CoCRN PD DL NOMA with SISO using C-Ch, and 7.45 bps/Hz/cell for CoCRN DL PDNOMA with SISO using D-Ch with a 40 dBm transmitting power. Furthermore, the SE for Ur5 (nearest user) was increased to 64%, 67%, and 69%, respectively, using PD-NOMA with 32 × 32 MIMO, PD-NOMA with 32 × 32 MIMO using C-Ch, and DL NOMA PD with 32 × 32 MIMO using D-Ch. DL PD-NOMA with MIMO(64 × 64) using D-Ch improved the SE rate by 77% having transmission power of 40 dBm in comparison with the SE outcome for DL PDNOMA with SISO; however, DL PD-NOMA with MIMO (64 × 64) most dramatically upgraded the SE rate for Ur5 by 73%. Using C-Ch and CoCRN DL PD-NOMA with MIMO (64 × 64), the SE performance was boosted by 76%. The best user, Ur5, had an 82% improvement in SE performance when DL PD-NOMA with M-MIMO (128 × 128) was compared to DL NOMA with SISO. With a 40 dBm transmission power, CoCRN DL NOMA with 128 × 128 M-MIMO using C-Ch showed an 88% improvement, whereas CoCRN DL PD-NOMA with M-MIMO (128 × 128) using D-Ch experienced an 89% improvement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
9.50%
发文量
323
审稿时长
7.9 months
期刊介绍: The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues. The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered: -Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.) -System control, network/service management -Network and Internet protocols and standards -Client-server, distributed and Web-based communication systems -Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity -Trials of advanced systems and services; their implementation and evaluation -Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation -Performance evaluation issues and methods.
期刊最新文献
A Simple Chirping-Based Spectrum Sensing Scheme for Cognitive Radio Applications SIW Technology for 5G Antenna Applications and Beyond—A Critical Review RETRACTION: Evolution from ancient medication to human-centered Healthcare 4.0: A review on health care recommender systems Improved Deep Reinforcement Learning With Faster Graph Recurrent Convolutional Neural Network-Enabled Adaptive Network Slicing for Tailored Service Delivery in NextGen Networks Optimizing Spectrum Efficiency With MIMO NOMA PD Approach in a 5G Cooperative Spectrum Sharing Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1