基于边缘计算平台的车联网动态分层入侵检测系统

IF 1.5 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IET Communications Pub Date : 2024-11-17 DOI:10.1049/cmu2.12865
Syed Sabir Mohamed S, Saranraj Gunasekaran, Rani Chinnamuthu, Gavendra Singh
{"title":"基于边缘计算平台的车联网动态分层入侵检测系统","authors":"Syed Sabir Mohamed S,&nbsp;Saranraj Gunasekaran,&nbsp;Rani Chinnamuthu,&nbsp;Gavendra Singh","doi":"10.1049/cmu2.12865","DOIUrl":null,"url":null,"abstract":"<p>In recent days, the Internet of Vehicles (IoV) and its network of connected automobiles have revealed several new security risks. Classical intrusion detection systems face challenges in identifying intrusions due to the growing number of vehicles, the dynamic nature of IoV, and limited resources. A hierarchical clustering method allows dividing the IoV network into clusters. The elements that determine the outcome are the geographical proximity and the traffic density. It is called the Dynamic Hierarchical Intrusion Detection Framework (DHIDF) for the IoV. To protect infrastructure and passengers, an IoV-specific DHIDF using edge computing has been proposed. Because of this, anomaly detection and localised assessment of danger will become less required. The application of DHIDF on a large scale inside the ecosystem of IoV is not entirely out of the question. The term encompasses several subfields, including intelligent transportation networks (ITNs), smart city infrastructure, fleet management, transportation, and autonomous vehicle systems. The efficacy of DHIDF is assessed through simulations that replicate current and potential future threats, including those related to the Internet of Things. Analysis of key performance parameters, including response time, detection accuracy, asset utilization, and scalability, has been conducted to assess the system's feasibility and durability.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"18 20","pages":"1778-1794"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12865","citationCount":"0","resultStr":"{\"title\":\"Dynamic hierarchical intrusion detection system for internet of vehicle on edge computing platform\",\"authors\":\"Syed Sabir Mohamed S,&nbsp;Saranraj Gunasekaran,&nbsp;Rani Chinnamuthu,&nbsp;Gavendra Singh\",\"doi\":\"10.1049/cmu2.12865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent days, the Internet of Vehicles (IoV) and its network of connected automobiles have revealed several new security risks. Classical intrusion detection systems face challenges in identifying intrusions due to the growing number of vehicles, the dynamic nature of IoV, and limited resources. A hierarchical clustering method allows dividing the IoV network into clusters. The elements that determine the outcome are the geographical proximity and the traffic density. It is called the Dynamic Hierarchical Intrusion Detection Framework (DHIDF) for the IoV. To protect infrastructure and passengers, an IoV-specific DHIDF using edge computing has been proposed. Because of this, anomaly detection and localised assessment of danger will become less required. The application of DHIDF on a large scale inside the ecosystem of IoV is not entirely out of the question. The term encompasses several subfields, including intelligent transportation networks (ITNs), smart city infrastructure, fleet management, transportation, and autonomous vehicle systems. The efficacy of DHIDF is assessed through simulations that replicate current and potential future threats, including those related to the Internet of Things. Analysis of key performance parameters, including response time, detection accuracy, asset utilization, and scalability, has been conducted to assess the system's feasibility and durability.</p>\",\"PeriodicalId\":55001,\"journal\":{\"name\":\"IET Communications\",\"volume\":\"18 20\",\"pages\":\"1778-1794\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12865\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12865\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12865","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

最近几天,车联网(IoV)及其联网汽车网络暴露出一些新的安全风险。由于车辆数量的增加、车联网的动态特性和有限的资源,传统的入侵检测系统在识别入侵方面面临挑战。分层聚类方法允许将IoV网络划分为多个集群。决定结果的因素是地理邻近性和交通密度。它被称为物联网的动态分层入侵检测框架(DHIDF)。为了保护基础设施和乘客,提出了一种使用边缘计算的iot专用DHIDF。因此,异常检测和局部危险评估将变得不那么必要。在车联网生态系统内大规模应用DHIDF并非完全不可能。该术语包括几个子领域,包括智能交通网络(itn)、智能城市基础设施、车队管理、交通运输和自动驾驶汽车系统。DHIDF的有效性通过模拟来评估,这些模拟复制了当前和潜在的未来威胁,包括与物联网相关的威胁。分析了关键性能参数,包括响应时间、检测精度、资产利用率和可扩展性,以评估系统的可行性和耐用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic hierarchical intrusion detection system for internet of vehicle on edge computing platform

In recent days, the Internet of Vehicles (IoV) and its network of connected automobiles have revealed several new security risks. Classical intrusion detection systems face challenges in identifying intrusions due to the growing number of vehicles, the dynamic nature of IoV, and limited resources. A hierarchical clustering method allows dividing the IoV network into clusters. The elements that determine the outcome are the geographical proximity and the traffic density. It is called the Dynamic Hierarchical Intrusion Detection Framework (DHIDF) for the IoV. To protect infrastructure and passengers, an IoV-specific DHIDF using edge computing has been proposed. Because of this, anomaly detection and localised assessment of danger will become less required. The application of DHIDF on a large scale inside the ecosystem of IoV is not entirely out of the question. The term encompasses several subfields, including intelligent transportation networks (ITNs), smart city infrastructure, fleet management, transportation, and autonomous vehicle systems. The efficacy of DHIDF is assessed through simulations that replicate current and potential future threats, including those related to the Internet of Things. Analysis of key performance parameters, including response time, detection accuracy, asset utilization, and scalability, has been conducted to assess the system's feasibility and durability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Communications
IET Communications 工程技术-工程:电子与电气
CiteScore
4.30
自引率
6.20%
发文量
220
审稿时长
5.9 months
期刊介绍: IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth. Topics include, but are not limited to: Coding and Communication Theory; Modulation and Signal Design; Wired, Wireless and Optical Communication; Communication System Special Issues. Current Call for Papers: Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf
期刊最新文献
Compact Dual-Band Microstrip Array Feed Network Using CRLH-TL Power Dividers An Efficient Cluster Based Routing in Wireless Sensor Networks Using Multiobjective-Perturbed Learning and Mutation Strategy Based Artificial Rabbits Optimisation CRAFIC Framework: Multi-Account Collaborative Fraud Detection, Efficient Feature Extraction and Relationship Modelling Combined with CNN-LSTM and Graph Attention Network A RIS-Based Single-Channel Direction-of-Arrival Estimation Method for Communication Signals Physical layer security in satellite communication: State-of-the-art and open problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1