{"title":"合成低成本微孔活性炭吸附剂,用于从棕榈果壳废物生物质中捕获二氧化碳","authors":"Shobanaboyina Swapna, Manne Parusha Ramudu, Police Vishnu Vardhan Reddy, Gande Ravi Kumar, Gaddameedi Hima Bindu, Challa Prathap, Dosali Mallesh","doi":"10.1002/jccs.202400261","DOIUrl":null,"url":null,"abstract":"<p>Using chemical activation techniques at dissimilar carbonization temperatures, activated carbon adsorbents were produced from Palmyra palm fruit biomass in this work. X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, laser Raman spectroscopy, scanning electron microscopy, CHNS-elemental analysis, and N<sub>2</sub> adsorption studies were among the characterization techniques used to assess the characteristics of the carbon adsorbents. The carbon adsorbents from Palmyra palm fruit were used to absorb CO<sub>2</sub> in a temperature range of 25–70°C. The findings of the characterization showed that these carbons have a large surface area and microporosity. The temperature of carbonization and the activating agent had an impact on the surface characteristics. The samples with the highest adsorption capacity, 4.70 mmol/g at 25°C, were the activated carbons made by treating them with KOH and then carbonizing them at 750°C. The physicochemical properties of the adsorbents provided an explanation for their high adsorption capacity. The adsorbents showed simple desorption and maintained constant activity during ten cycles of recycling.</p>","PeriodicalId":17262,"journal":{"name":"Journal of The Chinese Chemical Society","volume":"71 12","pages":"1435-1447"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of low-cost microporous activated carbon adsorbents for CO2 capture from Palmyra palm fruit shell waste biomass\",\"authors\":\"Shobanaboyina Swapna, Manne Parusha Ramudu, Police Vishnu Vardhan Reddy, Gande Ravi Kumar, Gaddameedi Hima Bindu, Challa Prathap, Dosali Mallesh\",\"doi\":\"10.1002/jccs.202400261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using chemical activation techniques at dissimilar carbonization temperatures, activated carbon adsorbents were produced from Palmyra palm fruit biomass in this work. X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, laser Raman spectroscopy, scanning electron microscopy, CHNS-elemental analysis, and N<sub>2</sub> adsorption studies were among the characterization techniques used to assess the characteristics of the carbon adsorbents. The carbon adsorbents from Palmyra palm fruit were used to absorb CO<sub>2</sub> in a temperature range of 25–70°C. The findings of the characterization showed that these carbons have a large surface area and microporosity. The temperature of carbonization and the activating agent had an impact on the surface characteristics. The samples with the highest adsorption capacity, 4.70 mmol/g at 25°C, were the activated carbons made by treating them with KOH and then carbonizing them at 750°C. The physicochemical properties of the adsorbents provided an explanation for their high adsorption capacity. The adsorbents showed simple desorption and maintained constant activity during ten cycles of recycling.</p>\",\"PeriodicalId\":17262,\"journal\":{\"name\":\"Journal of The Chinese Chemical Society\",\"volume\":\"71 12\",\"pages\":\"1435-1447\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Chinese Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jccs.202400261\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Chinese Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jccs.202400261","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis of low-cost microporous activated carbon adsorbents for CO2 capture from Palmyra palm fruit shell waste biomass
Using chemical activation techniques at dissimilar carbonization temperatures, activated carbon adsorbents were produced from Palmyra palm fruit biomass in this work. X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, laser Raman spectroscopy, scanning electron microscopy, CHNS-elemental analysis, and N2 adsorption studies were among the characterization techniques used to assess the characteristics of the carbon adsorbents. The carbon adsorbents from Palmyra palm fruit were used to absorb CO2 in a temperature range of 25–70°C. The findings of the characterization showed that these carbons have a large surface area and microporosity. The temperature of carbonization and the activating agent had an impact on the surface characteristics. The samples with the highest adsorption capacity, 4.70 mmol/g at 25°C, were the activated carbons made by treating them with KOH and then carbonizing them at 750°C. The physicochemical properties of the adsorbents provided an explanation for their high adsorption capacity. The adsorbents showed simple desorption and maintained constant activity during ten cycles of recycling.
期刊介绍:
The Journal of the Chinese Chemical Society was founded by The Chemical Society Located in Taipei in 1954, and is the oldest general chemistry journal in Taiwan. It is strictly peer-reviewed and welcomes review articles, full papers, notes and communications written in English. The scope of the Journal of the Chinese Chemical Society covers all major areas of chemistry: organic chemistry, inorganic chemistry, analytical chemistry, biochemistry, physical chemistry, and materials science.