数字人脑的模拟和同化

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Nature computational science Pub Date : 2024-12-19 DOI:10.1038/s43588-024-00731-3
Wenlian Lu, Xin Du, Jiexiang Wang, Longbin Zeng, Leijun Ye, Shitong Xiang, Qibao Zheng, Jie Zhang, Ningsheng Xu, Jianfeng Feng, the DTB Consortium
{"title":"数字人脑的模拟和同化","authors":"Wenlian Lu, Xin Du, Jiexiang Wang, Longbin Zeng, Leijun Ye, Shitong Xiang, Qibao Zheng, Jie Zhang, Ningsheng Xu, Jianfeng Feng, the DTB Consortium","doi":"10.1038/s43588-024-00731-3","DOIUrl":null,"url":null,"abstract":"Here we present the Digital Brain (DB)—a platform for simulating spiking neuronal networks at the large neuron scale of the human brain on the basis of personalized magnetic resonance imaging data and biological constraints. The DB aims to reproduce both the resting state and certain aspects of the action of the human brain. An architecture with up to 86 billion neurons and 14,012 GPUs—including a two-level routing scheme between GPUs to accelerate spike transmission in up to 47.8 trillion neuronal synapses—was implemented as part of the simulations. We show that the DB can reproduce blood-oxygen-level-dependent signals of the resting state of the human brain with a high correlation coefficient, as well as interact with its perceptual input, as demonstrated in a visual task. These results indicate the feasibility of implementing a digital representation of the human brain, which can open the door to a broad range of potential applications. The Digital Brain platform is capable of simulating spiking neuronal networks at the neuronal scale of the human brain. The platform is used to reproduce blood-oxygen-level-dependent signals in both the resting state and action, thereby predicting the visual evaluation scores.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 12","pages":"890-898"},"PeriodicalIF":12.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation and assimilation of the digital human brain\",\"authors\":\"Wenlian Lu, Xin Du, Jiexiang Wang, Longbin Zeng, Leijun Ye, Shitong Xiang, Qibao Zheng, Jie Zhang, Ningsheng Xu, Jianfeng Feng, the DTB Consortium\",\"doi\":\"10.1038/s43588-024-00731-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here we present the Digital Brain (DB)—a platform for simulating spiking neuronal networks at the large neuron scale of the human brain on the basis of personalized magnetic resonance imaging data and biological constraints. The DB aims to reproduce both the resting state and certain aspects of the action of the human brain. An architecture with up to 86 billion neurons and 14,012 GPUs—including a two-level routing scheme between GPUs to accelerate spike transmission in up to 47.8 trillion neuronal synapses—was implemented as part of the simulations. We show that the DB can reproduce blood-oxygen-level-dependent signals of the resting state of the human brain with a high correlation coefficient, as well as interact with its perceptual input, as demonstrated in a visual task. These results indicate the feasibility of implementing a digital representation of the human brain, which can open the door to a broad range of potential applications. The Digital Brain platform is capable of simulating spiking neuronal networks at the neuronal scale of the human brain. The platform is used to reproduce blood-oxygen-level-dependent signals in both the resting state and action, thereby predicting the visual evaluation scores.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"4 12\",\"pages\":\"890-898\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-024-00731-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00731-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在这里,我们提出了数字大脑(DB)——一个基于个性化磁共振成像数据和生物学限制在人脑大神经元尺度上模拟峰值神经元网络的平台。DB旨在重现人脑的静息状态和某些方面的活动。作为模拟的一部分,实现了一个包含多达860亿个神经元和14012个gpu的架构,包括gpu之间的两级路由方案,以加速多达47.8万亿个神经元突触的峰值传输。我们发现,DB能够以高相关系数再现人脑静息状态的血氧水平依赖信号,并与其感知输入相互作用,如在视觉任务中所示。这些结果表明,实现人类大脑的数字表示是可行的,这可以为广泛的潜在应用打开大门。数字大脑平台能够在人脑的神经元尺度上模拟脉冲神经元网络。该平台用于再现静息状态和动作状态下的血氧水平依赖信号,从而预测视觉评价分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulation and assimilation of the digital human brain
Here we present the Digital Brain (DB)—a platform for simulating spiking neuronal networks at the large neuron scale of the human brain on the basis of personalized magnetic resonance imaging data and biological constraints. The DB aims to reproduce both the resting state and certain aspects of the action of the human brain. An architecture with up to 86 billion neurons and 14,012 GPUs—including a two-level routing scheme between GPUs to accelerate spike transmission in up to 47.8 trillion neuronal synapses—was implemented as part of the simulations. We show that the DB can reproduce blood-oxygen-level-dependent signals of the resting state of the human brain with a high correlation coefficient, as well as interact with its perceptual input, as demonstrated in a visual task. These results indicate the feasibility of implementing a digital representation of the human brain, which can open the door to a broad range of potential applications. The Digital Brain platform is capable of simulating spiking neuronal networks at the neuronal scale of the human brain. The platform is used to reproduce blood-oxygen-level-dependent signals in both the resting state and action, thereby predicting the visual evaluation scores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
期刊最新文献
Enhancing synthesis prediction via machine learning. Harnessing large language models for data-scarce learning of polymer properties. A statistical framework for multi-trait rare variant analysis in large-scale whole-genome sequencing studies. MultiSTAAR delivers multi-trait rare variant analysis of biobank-scale sequencing data. Balancing autonomy and expertise in autonomous synthesis laboratories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1