胫骨前肌神经电刺激后的频率依赖性皮质脊髓易化。

IF 2.9 3区 医学 Q2 NEUROSCIENCES Neuroscience Pub Date : 2025-02-06 Epub Date: 2024-12-18 DOI:10.1016/j.neuroscience.2024.12.030
Shota Tsugaya, Atsushi Sasaki, Suzufumi Arai, Taishin Nomura, Matija Milosevic
{"title":"胫骨前肌神经电刺激后的频率依赖性皮质脊髓易化。","authors":"Shota Tsugaya, Atsushi Sasaki, Suzufumi Arai, Taishin Nomura, Matija Milosevic","doi":"10.1016/j.neuroscience.2024.12.030","DOIUrl":null,"url":null,"abstract":"<p><p>The optimal stimulation frequency for inducing neuromodulatory effects remains unclear. The purpose of our study was to investigate the effect of neuromuscular electrical stimulation (NMES) with different frequencies on cortical and spinal excitability. Thirteen able-bodied individuals participated in the experiment involving NMES: (i) low-frequency at 25 Hz, (ii) high-frequency at 100 Hz, and (iii) mixed-frequency at 25 and 100 Hz switched every one second. All interventions were applied on the tibialis anterior muscle using a 10 sec ON / 10 sec OFF duty cycle for 10 min, using motor-level NMES at 120 % of the individual motor threshold for each stimulating frequency. Assessments were performed at baseline, immediately after, and 30 min after the interventions. Corticospinal excitability and intracortical inhibition were examined using transcranial magnetic stimulation by assessing the motor evoked potentials and cortical silent period, respectively. Spinal motoneuron excitability and neuromuscular propagation were assessed using peripheral nerve stimulation by evaluating F-wave and maximum motor (M<sub>max</sub>) responses, respectively. Maximal voluntary contraction (MVC) was evaluated during isometric dorsiflexion force exertion. Motor performance was also evaluated during the ankle dorsiflexion force-matching task. Our results showed that mixed frequency was most effective in modulating corticospinal excitability, although motor performance was not affected by any intervention. The cortical silent period was prolonged and M<sub>max</sub> was inhibited by all frequencies, while the F-wave and MVC were unaffected. Mixed-frequency stimulation could recruit a more diverse range of motor units, which are recruited in a stimulus frequency-specific manner, than single-frequency stimulation, and thus may have affected corticospinal facilitation.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":"60-71"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequency-dependent corticospinal facilitation following tibialis anterior neuromuscular electrical stimulation.\",\"authors\":\"Shota Tsugaya, Atsushi Sasaki, Suzufumi Arai, Taishin Nomura, Matija Milosevic\",\"doi\":\"10.1016/j.neuroscience.2024.12.030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The optimal stimulation frequency for inducing neuromodulatory effects remains unclear. The purpose of our study was to investigate the effect of neuromuscular electrical stimulation (NMES) with different frequencies on cortical and spinal excitability. Thirteen able-bodied individuals participated in the experiment involving NMES: (i) low-frequency at 25 Hz, (ii) high-frequency at 100 Hz, and (iii) mixed-frequency at 25 and 100 Hz switched every one second. All interventions were applied on the tibialis anterior muscle using a 10 sec ON / 10 sec OFF duty cycle for 10 min, using motor-level NMES at 120 % of the individual motor threshold for each stimulating frequency. Assessments were performed at baseline, immediately after, and 30 min after the interventions. Corticospinal excitability and intracortical inhibition were examined using transcranial magnetic stimulation by assessing the motor evoked potentials and cortical silent period, respectively. Spinal motoneuron excitability and neuromuscular propagation were assessed using peripheral nerve stimulation by evaluating F-wave and maximum motor (M<sub>max</sub>) responses, respectively. Maximal voluntary contraction (MVC) was evaluated during isometric dorsiflexion force exertion. Motor performance was also evaluated during the ankle dorsiflexion force-matching task. Our results showed that mixed frequency was most effective in modulating corticospinal excitability, although motor performance was not affected by any intervention. The cortical silent period was prolonged and M<sub>max</sub> was inhibited by all frequencies, while the F-wave and MVC were unaffected. Mixed-frequency stimulation could recruit a more diverse range of motor units, which are recruited in a stimulus frequency-specific manner, than single-frequency stimulation, and thus may have affected corticospinal facilitation.</p>\",\"PeriodicalId\":19142,\"journal\":{\"name\":\"Neuroscience\",\"volume\":\" \",\"pages\":\"60-71\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuroscience.2024.12.030\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroscience.2024.12.030","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

诱导神经调节作用的最佳刺激频率尚不清楚。本研究的目的是探讨不同频率的神经肌肉电刺激(NMES)对皮层和脊髓兴奋性的影响。13名健全的人参与了NMES实验:(i) 25 Hz的低频,(ii) 100 Hz的高频,(iii) 25和100 Hz的混合频率每秒钟切换一次。所有干预措施均应用于胫骨前肌,使用10秒开/ 10秒关占空比,持续10 min,每个刺激频率使用单个运动阈值的120 %的运动水平NMES。评估分别在基线、干预后立即和干预后30 min进行。采用经颅磁刺激法分别测定运动诱发电位和皮质沉默期,检测皮质脊髓兴奋性和皮质内抑制。脊髓运动神经元兴奋性和神经肌肉繁殖分别通过周围神经刺激评估f波和最大运动(Mmax)反应。最大自愿收缩(MVC)评估在等距背屈力发挥。在踝关节背屈力匹配任务中,运动表现也被评估。我们的研究结果表明,混合频率在调节皮质脊髓兴奋性方面最有效,尽管运动表现不受任何干预的影响。各频率均可延长皮层沉默期,抑制Mmax,而f波和MVC不受影响。与单频刺激相比,混合频率刺激可以调动更多样化的运动单元,这些运动单元以刺激频率特异性的方式调动,因此可能影响皮质脊髓促进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Frequency-dependent corticospinal facilitation following tibialis anterior neuromuscular electrical stimulation.

The optimal stimulation frequency for inducing neuromodulatory effects remains unclear. The purpose of our study was to investigate the effect of neuromuscular electrical stimulation (NMES) with different frequencies on cortical and spinal excitability. Thirteen able-bodied individuals participated in the experiment involving NMES: (i) low-frequency at 25 Hz, (ii) high-frequency at 100 Hz, and (iii) mixed-frequency at 25 and 100 Hz switched every one second. All interventions were applied on the tibialis anterior muscle using a 10 sec ON / 10 sec OFF duty cycle for 10 min, using motor-level NMES at 120 % of the individual motor threshold for each stimulating frequency. Assessments were performed at baseline, immediately after, and 30 min after the interventions. Corticospinal excitability and intracortical inhibition were examined using transcranial magnetic stimulation by assessing the motor evoked potentials and cortical silent period, respectively. Spinal motoneuron excitability and neuromuscular propagation were assessed using peripheral nerve stimulation by evaluating F-wave and maximum motor (Mmax) responses, respectively. Maximal voluntary contraction (MVC) was evaluated during isometric dorsiflexion force exertion. Motor performance was also evaluated during the ankle dorsiflexion force-matching task. Our results showed that mixed frequency was most effective in modulating corticospinal excitability, although motor performance was not affected by any intervention. The cortical silent period was prolonged and Mmax was inhibited by all frequencies, while the F-wave and MVC were unaffected. Mixed-frequency stimulation could recruit a more diverse range of motor units, which are recruited in a stimulus frequency-specific manner, than single-frequency stimulation, and thus may have affected corticospinal facilitation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroscience
Neuroscience 医学-神经科学
CiteScore
6.20
自引率
0.00%
发文量
394
审稿时长
52 days
期刊介绍: Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.
期刊最新文献
Effects of ascorbic acid on myelination in offspring of advanced maternal age. Repeated exposure to high-dose nicotine induces prefrontal gray matter atrophy in adolescent male rats. Bayesian brain theory: Computational neuroscience of belief. Effects and mechanisms of Apelin in treating central nervous system diseases. Neuroticism and cerebral small vessel disease: A genetic correlation and Mendelian randomization analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1