儿科麻醉术中核心体温测量报告的最小时间间隔是多少?二次分析。

IF 2 3区 医学 Q2 ANESTHESIOLOGY Journal of Clinical Monitoring and Computing Pub Date : 2024-12-19 DOI:10.1007/s10877-024-01254-y
Clemens Miller, Anselm Bräuer, Johannes Wieditz, Marcus Nemeth
{"title":"儿科麻醉术中核心体温测量报告的最小时间间隔是多少?二次分析。","authors":"Clemens Miller, Anselm Bräuer, Johannes Wieditz, Marcus Nemeth","doi":"10.1007/s10877-024-01254-y","DOIUrl":null,"url":null,"abstract":"<p><p>Given that perioperative normothermia represents a quality parameter in pediatric anesthesia, numerous studies have been conducted on temperature measurement, albeit with heterogeneous measurement intervals, ranging from 30 s to fifteen minutes. We aimed to determine the minimum time interval for reporting of intraoperative core body temperature across commonly used measurement intervals in children. Data were extracted from the records of 65 children who had participated in another clinical study and analyzed using a quasibinomial mixed linear model. Documented artifacts, like probe dislocations or at the end of anesthesia, were removed. Primary outcome was the respective probability of failing to detect a temperature change of 0.2 °C or more at any one measurement point at 30 s, one minute, two minutes, five minutes, ten minutes, and fifteen minutes, considering an expected probability of less than 5% to be acceptable. Secondary outcomes included the probabilities of failing to detect hypothermia (< 36.0 °C) and hyperthermia (> 38.0 °C). Following the removal of 4,909 exclusions, the remaining 222,366 timestamped measurements (representing just over 60 h of monitoring) were analyzed. The median measurement time was 45 min. The expected probabilities of failing to detect a temperature change of 0.2 °C or more were 0.2% [95%-CI 0.0-0.7], 0.5% [95%-CI 0.0-1.2], 1.5% [95%-CI 0.2-2.6], 4.8% [95%-CI 2.7-6.9], 22.4% [95%-CI 18.3-26.4], and 31.9% [95%-CI 27.3-36.4], respectively. Probabilities for the detection of hyperthermia (n = 9) were lower and omitted for hypothermia due to low prevalence (n = 1). In conclusion, the core body temperature should be reported at intervals of no more than five minutes to ensure the detection of any temperature change in normothermic ranges. Further studies should focus on hypothermic and hyperthermic ranges.</p>","PeriodicalId":15513,"journal":{"name":"Journal of Clinical Monitoring and Computing","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What is the minimum time interval for reporting of intraoperative core body temperature measurements in pediatric anesthesia? A secondary analysis.\",\"authors\":\"Clemens Miller, Anselm Bräuer, Johannes Wieditz, Marcus Nemeth\",\"doi\":\"10.1007/s10877-024-01254-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Given that perioperative normothermia represents a quality parameter in pediatric anesthesia, numerous studies have been conducted on temperature measurement, albeit with heterogeneous measurement intervals, ranging from 30 s to fifteen minutes. We aimed to determine the minimum time interval for reporting of intraoperative core body temperature across commonly used measurement intervals in children. Data were extracted from the records of 65 children who had participated in another clinical study and analyzed using a quasibinomial mixed linear model. Documented artifacts, like probe dislocations or at the end of anesthesia, were removed. Primary outcome was the respective probability of failing to detect a temperature change of 0.2 °C or more at any one measurement point at 30 s, one minute, two minutes, five minutes, ten minutes, and fifteen minutes, considering an expected probability of less than 5% to be acceptable. Secondary outcomes included the probabilities of failing to detect hypothermia (< 36.0 °C) and hyperthermia (> 38.0 °C). Following the removal of 4,909 exclusions, the remaining 222,366 timestamped measurements (representing just over 60 h of monitoring) were analyzed. The median measurement time was 45 min. The expected probabilities of failing to detect a temperature change of 0.2 °C or more were 0.2% [95%-CI 0.0-0.7], 0.5% [95%-CI 0.0-1.2], 1.5% [95%-CI 0.2-2.6], 4.8% [95%-CI 2.7-6.9], 22.4% [95%-CI 18.3-26.4], and 31.9% [95%-CI 27.3-36.4], respectively. Probabilities for the detection of hyperthermia (n = 9) were lower and omitted for hypothermia due to low prevalence (n = 1). In conclusion, the core body temperature should be reported at intervals of no more than five minutes to ensure the detection of any temperature change in normothermic ranges. Further studies should focus on hypothermic and hyperthermic ranges.</p>\",\"PeriodicalId\":15513,\"journal\":{\"name\":\"Journal of Clinical Monitoring and Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Monitoring and Computing\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10877-024-01254-y\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANESTHESIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Monitoring and Computing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10877-024-01254-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
What is the minimum time interval for reporting of intraoperative core body temperature measurements in pediatric anesthesia? A secondary analysis.

Given that perioperative normothermia represents a quality parameter in pediatric anesthesia, numerous studies have been conducted on temperature measurement, albeit with heterogeneous measurement intervals, ranging from 30 s to fifteen minutes. We aimed to determine the minimum time interval for reporting of intraoperative core body temperature across commonly used measurement intervals in children. Data were extracted from the records of 65 children who had participated in another clinical study and analyzed using a quasibinomial mixed linear model. Documented artifacts, like probe dislocations or at the end of anesthesia, were removed. Primary outcome was the respective probability of failing to detect a temperature change of 0.2 °C or more at any one measurement point at 30 s, one minute, two minutes, five minutes, ten minutes, and fifteen minutes, considering an expected probability of less than 5% to be acceptable. Secondary outcomes included the probabilities of failing to detect hypothermia (< 36.0 °C) and hyperthermia (> 38.0 °C). Following the removal of 4,909 exclusions, the remaining 222,366 timestamped measurements (representing just over 60 h of monitoring) were analyzed. The median measurement time was 45 min. The expected probabilities of failing to detect a temperature change of 0.2 °C or more were 0.2% [95%-CI 0.0-0.7], 0.5% [95%-CI 0.0-1.2], 1.5% [95%-CI 0.2-2.6], 4.8% [95%-CI 2.7-6.9], 22.4% [95%-CI 18.3-26.4], and 31.9% [95%-CI 27.3-36.4], respectively. Probabilities for the detection of hyperthermia (n = 9) were lower and omitted for hypothermia due to low prevalence (n = 1). In conclusion, the core body temperature should be reported at intervals of no more than five minutes to ensure the detection of any temperature change in normothermic ranges. Further studies should focus on hypothermic and hyperthermic ranges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
13.60%
发文量
144
审稿时长
6-12 weeks
期刊介绍: The Journal of Clinical Monitoring and Computing is a clinical journal publishing papers related to technology in the fields of anaesthesia, intensive care medicine, emergency medicine, and peri-operative medicine. The journal has links with numerous specialist societies, including editorial board representatives from the European Society for Computing and Technology in Anaesthesia and Intensive Care (ESCTAIC), the Society for Technology in Anesthesia (STA), the Society for Complex Acute Illness (SCAI) and the NAVAt (NAVigating towards your Anaestheisa Targets) group. The journal publishes original papers, narrative and systematic reviews, technological notes, letters to the editor, editorial or commentary papers, and policy statements or guidelines from national or international societies. The journal encourages debate on published papers and technology, including letters commenting on previous publications or technological concerns. The journal occasionally publishes special issues with technological or clinical themes, or reports and abstracts from scientificmeetings. Special issues proposals should be sent to the Editor-in-Chief. Specific details of types of papers, and the clinical and technological content of papers considered within scope can be found in instructions for authors.
期刊最新文献
Automated and reference methods for the calculation of left ventricular outflow tract velocity time integral or ejection fraction by non-cardiologists: a systematic review on the agreement of the two methods. Entropy of difference works similarly to permutation entropy for the assessment of anesthesia and sleep EEG despite the lower computational effort. Noninvasive estimation of PaCO2 from volumetric capnography in animals with injured lungs: an Artificial Intelligence approach. Rapid non-invasive measurement of mitochondrial oxygen tension after microneedle pre-treatment: a feasibility study in human volunteers. Electroencephalogram monitoring during anesthesia and critical care: a guide for the clinician.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1