Alzhraa Ali Mohamed, Safaa Saed, Sara Ramadan El-Sayed, Mohamed Taha Yassin, Mohamed Gad, Eman Tartour, Hoda A Fathey, Asmaa S Taha, Asmaa H Mohamed, Fatimah Olyan Al-Otibi, Mohamed Ragab AbdelGawwad, Mohamed M Sayed Ahmed, Susan Ahmed Almalki, Mohamed Abdel-Haleem
{"title":"美罗培南-氧化锌-纳米粒子联合疗法可有效消除耐碳青霉烯类抗生素肺炎克雷伯氏菌(CRKP)生物膜,并降低肾毒性(体外)。","authors":"Alzhraa Ali Mohamed, Safaa Saed, Sara Ramadan El-Sayed, Mohamed Taha Yassin, Mohamed Gad, Eman Tartour, Hoda A Fathey, Asmaa S Taha, Asmaa H Mohamed, Fatimah Olyan Al-Otibi, Mohamed Ragab AbdelGawwad, Mohamed M Sayed Ahmed, Susan Ahmed Almalki, Mohamed Abdel-Haleem","doi":"10.1093/lambio/ovae136","DOIUrl":null,"url":null,"abstract":"<p><p>In response to the World Health Organization's research agenda of antimicrobial resistance in human health, this study appraised the antibacterial and antibiofilm synergistic activity of meropenem and ZnO nanoparticles (ZnO-NPs) combination against carbapenem-resistant Klebsiella pneumoniae (CRKP). The minimum inhibitory concentration (MIC) of meropenem in combination was found to be ~1/12 of its MIC alone. The results of microtiter dilution assay showed that the combination was more efficient in reducing the biofilm biomass than meropenem alone or ZnO-NPs alone. The scanning-electron-microscopy micrographs elucidated that the combination of meropenem with ZnO-NPs has significantly enhanced its competence in eradicating the preformed biofilms of CRKP strains. In addition, the relative gene expression results showed that the combination compared to the meropenem alone and ZnO-NPs alone eloquently down-regulated the expression of biofilm genes (mrkA, fimA, and ecpA). Besides, the MTT-assay demonstrated that the combination has limited cytotoxicity against Vero-cells (in vitro). Overall, this study represents an efficient safe enhancement of meropenem to tackle the growing health threat of CRKP and carbapenem-resistant Enterobacterals prevalence.</p>","PeriodicalId":17962,"journal":{"name":"Letters in Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A combined therapy of meropenem-ZnO nanoparticles efficiently eliminates carbapenem-resistant Klebsiella pneumoniae biofilms, with reduced nephrotoxicity (in vitro).\",\"authors\":\"Alzhraa Ali Mohamed, Safaa Saed, Sara Ramadan El-Sayed, Mohamed Taha Yassin, Mohamed Gad, Eman Tartour, Hoda A Fathey, Asmaa S Taha, Asmaa H Mohamed, Fatimah Olyan Al-Otibi, Mohamed Ragab AbdelGawwad, Mohamed M Sayed Ahmed, Susan Ahmed Almalki, Mohamed Abdel-Haleem\",\"doi\":\"10.1093/lambio/ovae136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In response to the World Health Organization's research agenda of antimicrobial resistance in human health, this study appraised the antibacterial and antibiofilm synergistic activity of meropenem and ZnO nanoparticles (ZnO-NPs) combination against carbapenem-resistant Klebsiella pneumoniae (CRKP). The minimum inhibitory concentration (MIC) of meropenem in combination was found to be ~1/12 of its MIC alone. The results of microtiter dilution assay showed that the combination was more efficient in reducing the biofilm biomass than meropenem alone or ZnO-NPs alone. The scanning-electron-microscopy micrographs elucidated that the combination of meropenem with ZnO-NPs has significantly enhanced its competence in eradicating the preformed biofilms of CRKP strains. In addition, the relative gene expression results showed that the combination compared to the meropenem alone and ZnO-NPs alone eloquently down-regulated the expression of biofilm genes (mrkA, fimA, and ecpA). Besides, the MTT-assay demonstrated that the combination has limited cytotoxicity against Vero-cells (in vitro). Overall, this study represents an efficient safe enhancement of meropenem to tackle the growing health threat of CRKP and carbapenem-resistant Enterobacterals prevalence.</p>\",\"PeriodicalId\":17962,\"journal\":{\"name\":\"Letters in Applied Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Applied Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/lambio/ovae136\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/lambio/ovae136","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
A combined therapy of meropenem-ZnO nanoparticles efficiently eliminates carbapenem-resistant Klebsiella pneumoniae biofilms, with reduced nephrotoxicity (in vitro).
In response to the World Health Organization's research agenda of antimicrobial resistance in human health, this study appraised the antibacterial and antibiofilm synergistic activity of meropenem and ZnO nanoparticles (ZnO-NPs) combination against carbapenem-resistant Klebsiella pneumoniae (CRKP). The minimum inhibitory concentration (MIC) of meropenem in combination was found to be ~1/12 of its MIC alone. The results of microtiter dilution assay showed that the combination was more efficient in reducing the biofilm biomass than meropenem alone or ZnO-NPs alone. The scanning-electron-microscopy micrographs elucidated that the combination of meropenem with ZnO-NPs has significantly enhanced its competence in eradicating the preformed biofilms of CRKP strains. In addition, the relative gene expression results showed that the combination compared to the meropenem alone and ZnO-NPs alone eloquently down-regulated the expression of biofilm genes (mrkA, fimA, and ecpA). Besides, the MTT-assay demonstrated that the combination has limited cytotoxicity against Vero-cells (in vitro). Overall, this study represents an efficient safe enhancement of meropenem to tackle the growing health threat of CRKP and carbapenem-resistant Enterobacterals prevalence.
期刊介绍:
Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.