直肠真杆菌膜泡通过NLRP3信号通路的抗炎作用

IF 4.4 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Probiotics and Antimicrobial Proteins Pub Date : 2024-12-20 DOI:10.1007/s12602-024-10432-y
Hongxia Zhang, Yanan Zhao, Dengfu Li, Haixia Li, Zhu Wang, Lu Zhang, Huafeng Niu, Yuchen Huang, Chenchong Zhao, Yaping Jin, Dong Zhou
{"title":"直肠真杆菌膜泡通过NLRP3信号通路的抗炎作用","authors":"Hongxia Zhang, Yanan Zhao, Dengfu Li, Haixia Li, Zhu Wang, Lu Zhang, Huafeng Niu, Yuchen Huang, Chenchong Zhao, Yaping Jin, Dong Zhou","doi":"10.1007/s12602-024-10432-y","DOIUrl":null,"url":null,"abstract":"<p><p>Eubacterium rectale (E. rectale) has the ability to attenuate systemic and intestinal inflammation. Its naturally secreted membrane vesicles (MVs) likely play a crucial role in this process. The objective of this study is to investigate the anti-inflammatory effects of E. rectale and its membrane vesicles (MVs). An inflammation model was established by inducing an inflammatory response in Raw 264.7 cells using lipopolysaccharide (LPS). Subsequently, the cells were pre-treated with E. rectale and its MVs, and the expression levels of IL-1β, IL-6, TNF-α, and IL-10 in the cells were then detected using RT-qPCR. ELISA was used to measure the secretion levels of IL-1β, while western blot analysis was employed to assess the expression of key proteins in the IL-1β pathway, specifically ASC, Caspase 1, and NLRP3. The results revealed that both E. rectale and its MVs significantly reduced the expression of the inflammatory cytokines IL-1β and TNF-α in Raw 264.7 cells, which were induced by LPS. Additionally, they markedly upregulated the expression of the anti-inflammatory cytokine IL-10 and suppressed IL-1β expression via the NLRP3-Caspase 1-ASC signaling pathway. These findings suggest that E. rectale, through its membrane vesicles, can attenuate LPS-induced NLRP3 inflammasome activation, thereby mitigating the inflammatory response in Raw 264.7 cells.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-inflammatory Effects of Membrane Vesicles from Eubacterium rectale via the NLRP3 Signal Pathway.\",\"authors\":\"Hongxia Zhang, Yanan Zhao, Dengfu Li, Haixia Li, Zhu Wang, Lu Zhang, Huafeng Niu, Yuchen Huang, Chenchong Zhao, Yaping Jin, Dong Zhou\",\"doi\":\"10.1007/s12602-024-10432-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Eubacterium rectale (E. rectale) has the ability to attenuate systemic and intestinal inflammation. Its naturally secreted membrane vesicles (MVs) likely play a crucial role in this process. The objective of this study is to investigate the anti-inflammatory effects of E. rectale and its membrane vesicles (MVs). An inflammation model was established by inducing an inflammatory response in Raw 264.7 cells using lipopolysaccharide (LPS). Subsequently, the cells were pre-treated with E. rectale and its MVs, and the expression levels of IL-1β, IL-6, TNF-α, and IL-10 in the cells were then detected using RT-qPCR. ELISA was used to measure the secretion levels of IL-1β, while western blot analysis was employed to assess the expression of key proteins in the IL-1β pathway, specifically ASC, Caspase 1, and NLRP3. The results revealed that both E. rectale and its MVs significantly reduced the expression of the inflammatory cytokines IL-1β and TNF-α in Raw 264.7 cells, which were induced by LPS. Additionally, they markedly upregulated the expression of the anti-inflammatory cytokine IL-10 and suppressed IL-1β expression via the NLRP3-Caspase 1-ASC signaling pathway. These findings suggest that E. rectale, through its membrane vesicles, can attenuate LPS-induced NLRP3 inflammasome activation, thereby mitigating the inflammatory response in Raw 264.7 cells.</p>\",\"PeriodicalId\":20506,\"journal\":{\"name\":\"Probiotics and Antimicrobial Proteins\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probiotics and Antimicrobial Proteins\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12602-024-10432-y\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probiotics and Antimicrobial Proteins","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12602-024-10432-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

直肠真杆菌(直肠真杆菌)具有减轻全身和肠道炎症的能力。其自然分泌的膜囊泡(MVs)可能在这一过程中起着至关重要的作用。本研究的目的是探讨直肠肠梭菌及其膜泡的抗炎作用。采用脂多糖(LPS)诱导Raw 264.7细胞产生炎症反应,建立炎症模型。随后,用直肠肠杆菌及其mv预处理细胞,采用RT-qPCR检测细胞中IL-1β、IL-6、TNF-α和IL-10的表达水平。ELISA法检测IL-1β分泌水平,western blot法检测IL-1β通路关键蛋白ASC、Caspase 1、NLRP3的表达。结果显示,直肠肠杆菌及其mv均能显著降低LPS诱导的Raw 264.7细胞中炎症因子IL-1β和TNF-α的表达。此外,它们通过NLRP3-Caspase 1-ASC信号通路显著上调抗炎细胞因子IL-10的表达,抑制IL-1β的表达。这些发现表明直肠肠杆菌可以通过其膜泡减弱lps诱导的NLRP3炎症小体激活,从而减轻Raw 264.7细胞的炎症反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anti-inflammatory Effects of Membrane Vesicles from Eubacterium rectale via the NLRP3 Signal Pathway.

Eubacterium rectale (E. rectale) has the ability to attenuate systemic and intestinal inflammation. Its naturally secreted membrane vesicles (MVs) likely play a crucial role in this process. The objective of this study is to investigate the anti-inflammatory effects of E. rectale and its membrane vesicles (MVs). An inflammation model was established by inducing an inflammatory response in Raw 264.7 cells using lipopolysaccharide (LPS). Subsequently, the cells were pre-treated with E. rectale and its MVs, and the expression levels of IL-1β, IL-6, TNF-α, and IL-10 in the cells were then detected using RT-qPCR. ELISA was used to measure the secretion levels of IL-1β, while western blot analysis was employed to assess the expression of key proteins in the IL-1β pathway, specifically ASC, Caspase 1, and NLRP3. The results revealed that both E. rectale and its MVs significantly reduced the expression of the inflammatory cytokines IL-1β and TNF-α in Raw 264.7 cells, which were induced by LPS. Additionally, they markedly upregulated the expression of the anti-inflammatory cytokine IL-10 and suppressed IL-1β expression via the NLRP3-Caspase 1-ASC signaling pathway. These findings suggest that E. rectale, through its membrane vesicles, can attenuate LPS-induced NLRP3 inflammasome activation, thereby mitigating the inflammatory response in Raw 264.7 cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probiotics and Antimicrobial Proteins
Probiotics and Antimicrobial Proteins BIOTECHNOLOGY & APPLIED MICROBIOLOGYMICROB-MICROBIOLOGY
CiteScore
11.30
自引率
6.10%
发文量
140
期刊介绍: Probiotics and Antimicrobial Proteins publishes reviews, original articles, letters and short notes and technical/methodological communications aimed at advancing fundamental knowledge and exploration of the applications of probiotics, natural antimicrobial proteins and their derivatives in biomedical, agricultural, veterinary, food, and cosmetic products. The Journal welcomes fundamental research articles and reports on applications of these microorganisms and substances, and encourages structural studies and studies that correlate the structure and functional properties of antimicrobial proteins.
期刊最新文献
Synergistic Interactions Between Probiotics and Anticancer Drugs: Mechanisms, Benefits, and Challenges. Bibliometric Analysis of Probiotic Bacillus in Food Science: Evolution of Research Trends and Systematic Evaluation. New Frontiers in Fighting Mycobacterial Infections: Venom-Derived Peptides. Recombinant Expression of a New Antimicrobial Peptide Composed of hBD-3 and hBD-4 in Escherichia coli and Investigation of Its Activity Against Multidrug-Resistant Bacteria. Exploring the Potential Use of Probiotics, Prebiotics, Synbiotics, and Postbiotics as Adjuvants for Modulating the Vaginal Microbiome: a Bibliometric Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1