数字乳腺断层合成系统概念,满足乳腺癌筛查和诊断的需求。

IF 1.9 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Medical Imaging Pub Date : 2025-01-01 Epub Date: 2024-12-17 DOI:10.1117/1.JMI.12.S1.S13010
Marcus Radicke, Marcel Beister, Stephan Dwars, Joerg Freudenberger, Pilar B Garcia-Allende, Bernhard Geiger, Katrin Hall, WenMan He, Axel Hebecker, Carina Heimann, Daan Hellingman, Magdalena Herbst, Mathias Hoernig, Thomas Klinnert, Ferdinand Lueck, Ralf Nanke, Ludwig Ritschl, Stefan Schaffert, Sabine Schneider, Daniel Stein, Julia Wicklein, Steffen Kappler
{"title":"数字乳腺断层合成系统概念,满足乳腺癌筛查和诊断的需求。","authors":"Marcus Radicke, Marcel Beister, Stephan Dwars, Joerg Freudenberger, Pilar B Garcia-Allende, Bernhard Geiger, Katrin Hall, WenMan He, Axel Hebecker, Carina Heimann, Daan Hellingman, Magdalena Herbst, Mathias Hoernig, Thomas Klinnert, Ferdinand Lueck, Ralf Nanke, Ludwig Ritschl, Stefan Schaffert, Sabine Schneider, Daniel Stein, Julia Wicklein, Steffen Kappler","doi":"10.1117/1.JMI.12.S1.S13010","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Digital breast tomosynthesis (DBT) has been introduced more than a decade ago. Studies have shown higher breast cancer detection rates and lower recall rates, and it has become an established imaging method in diagnostic settings. However, full-field digital mammography (FFDM) remains the most common imaging modality for screening in many countries, as it delivers high-resolution planar images of the breast. To combine the advantages of DBT with the faster acquisition and the unique in-plane resolution capabilities known from FFDM, a system concept was developed for application in screening and diagnosis.</p><p><strong>Approach: </strong>The concept comprises an X-ray tube with adaptive focal spot position based on the flying focal spot (FFS) technology and optimized X-ray spectra. This is combined with innovative algorithmic concepts for tomosynthesis reconstruction and synthetic mammograms (SMs).</p><p><strong>Results: </strong>An X-ray tube with FFS was incorporated into a DBT system that performs 50-deg wide tomosynthesis scans with 25 projections in 4.85 s. Laboratory evaluations demonstrated significant improvements in the effective modular transfer function (eMTF). The improved eMTF as well as the effectiveness of the algorithmic concepts is shown in images from a clinical evaluation study.</p><p><strong>Conclusions: </strong>The DBT system concept enables high spatial resolution at short acquisition times. This leads to improved microcalcification visibility, reduced risk of motion artifacts, and shorter breast compression times. It shifts the in-plane resolution of DBT into the high-resolution range of FFDM. The presented technology leap might be a key contributor to facilitating the paradigm shift of replacing FFDM with DBT plus SM.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 Suppl 1","pages":"S13010"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11654754/pdf/","citationCount":"0","resultStr":"{\"title\":\"Digital breast tomosynthesis system concept addressing the needs in breast cancer screening and diagnosis.\",\"authors\":\"Marcus Radicke, Marcel Beister, Stephan Dwars, Joerg Freudenberger, Pilar B Garcia-Allende, Bernhard Geiger, Katrin Hall, WenMan He, Axel Hebecker, Carina Heimann, Daan Hellingman, Magdalena Herbst, Mathias Hoernig, Thomas Klinnert, Ferdinand Lueck, Ralf Nanke, Ludwig Ritschl, Stefan Schaffert, Sabine Schneider, Daniel Stein, Julia Wicklein, Steffen Kappler\",\"doi\":\"10.1117/1.JMI.12.S1.S13010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Digital breast tomosynthesis (DBT) has been introduced more than a decade ago. Studies have shown higher breast cancer detection rates and lower recall rates, and it has become an established imaging method in diagnostic settings. However, full-field digital mammography (FFDM) remains the most common imaging modality for screening in many countries, as it delivers high-resolution planar images of the breast. To combine the advantages of DBT with the faster acquisition and the unique in-plane resolution capabilities known from FFDM, a system concept was developed for application in screening and diagnosis.</p><p><strong>Approach: </strong>The concept comprises an X-ray tube with adaptive focal spot position based on the flying focal spot (FFS) technology and optimized X-ray spectra. This is combined with innovative algorithmic concepts for tomosynthesis reconstruction and synthetic mammograms (SMs).</p><p><strong>Results: </strong>An X-ray tube with FFS was incorporated into a DBT system that performs 50-deg wide tomosynthesis scans with 25 projections in 4.85 s. Laboratory evaluations demonstrated significant improvements in the effective modular transfer function (eMTF). The improved eMTF as well as the effectiveness of the algorithmic concepts is shown in images from a clinical evaluation study.</p><p><strong>Conclusions: </strong>The DBT system concept enables high spatial resolution at short acquisition times. This leads to improved microcalcification visibility, reduced risk of motion artifacts, and shorter breast compression times. It shifts the in-plane resolution of DBT into the high-resolution range of FFDM. The presented technology leap might be a key contributor to facilitating the paradigm shift of replacing FFDM with DBT plus SM.</p>\",\"PeriodicalId\":47707,\"journal\":{\"name\":\"Journal of Medical Imaging\",\"volume\":\"12 Suppl 1\",\"pages\":\"S13010\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11654754/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JMI.12.S1.S13010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.12.S1.S13010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:数字乳腺断层合成技术(DBT)在十多年前就已经被引入。研究表明,乳腺癌的检出率较高,召回率较低,它已成为一种成熟的诊断成像方法。然而,在许多国家,全视场数字乳房x线摄影(FFDM)仍然是最常见的筛查成像方式,因为它提供了乳房的高分辨率平面图像。为了将DBT的优势与快速采集和FFDM独特的平面内分辨率能力相结合,开发了一个用于筛查和诊断的系统概念。方法:该概念包括基于飞行焦斑(FFS)技术和优化x射线光谱的自适应焦斑位置x射线管。这与用于断层合成重建和合成乳房x线照片(SMs)的创新算法概念相结合。结果:将带FFS的x射线管纳入DBT系统,在4.85 s内进行50°宽的断层合成扫描,共25个投影。实验室评估表明有效模传递函数(eMTF)有显著改善。改进的eMTF以及算法概念的有效性在临床评估研究的图像中得到了体现。结论:DBT系统概念可以在短采集时间内实现高空间分辨率。这可以提高微钙化的可见度,降低运动伪影的风险,缩短乳房压缩时间。它将DBT的平面内分辨率转移到FFDM的高分辨率范围内。所提出的技术飞跃可能是促进用DBT + SM取代FFDM的范式转换的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Digital breast tomosynthesis system concept addressing the needs in breast cancer screening and diagnosis.

Purpose: Digital breast tomosynthesis (DBT) has been introduced more than a decade ago. Studies have shown higher breast cancer detection rates and lower recall rates, and it has become an established imaging method in diagnostic settings. However, full-field digital mammography (FFDM) remains the most common imaging modality for screening in many countries, as it delivers high-resolution planar images of the breast. To combine the advantages of DBT with the faster acquisition and the unique in-plane resolution capabilities known from FFDM, a system concept was developed for application in screening and diagnosis.

Approach: The concept comprises an X-ray tube with adaptive focal spot position based on the flying focal spot (FFS) technology and optimized X-ray spectra. This is combined with innovative algorithmic concepts for tomosynthesis reconstruction and synthetic mammograms (SMs).

Results: An X-ray tube with FFS was incorporated into a DBT system that performs 50-deg wide tomosynthesis scans with 25 projections in 4.85 s. Laboratory evaluations demonstrated significant improvements in the effective modular transfer function (eMTF). The improved eMTF as well as the effectiveness of the algorithmic concepts is shown in images from a clinical evaluation study.

Conclusions: The DBT system concept enables high spatial resolution at short acquisition times. This leads to improved microcalcification visibility, reduced risk of motion artifacts, and shorter breast compression times. It shifts the in-plane resolution of DBT into the high-resolution range of FFDM. The presented technology leap might be a key contributor to facilitating the paradigm shift of replacing FFDM with DBT plus SM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
期刊最新文献
In-silico study of the impact of system design parameters on microcalcification detection in wide-angle digital breast tomosynthesis. Estimation of the absorbed dose in simultaneous digital breast tomosynthesis and mechanical imaging. Breathing motion compensation in chest tomosynthesis: evaluation of the effect on image quality and presence of artifacts. Automated assessment of task-based performance of digital mammography and tomosynthesis systems using an anthropomorphic breast phantom and deep learning-based scoring. Our journey toward implementation of digital breast tomosynthesis in breast cancer screening: the Malmö Breast Tomosynthesis Screening Project.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1