基于语音的算法可以预测美国成年人的2型糖尿病状态:来自Colive Voice研究的发现。

PLOS digital health Pub Date : 2024-12-19 eCollection Date: 2024-12-01 DOI:10.1371/journal.pdig.0000679
Abir Elbéji, Mégane Pizzimenti, Gloria Aguayo, Aurélie Fischer, Hanin Ayadi, Franck Mauvais-Jarvis, Jean-Pierre Riveline, Vladimir Despotovic, Guy Fagherazzi
{"title":"基于语音的算法可以预测美国成年人的2型糖尿病状态:来自Colive Voice研究的发现。","authors":"Abir Elbéji, Mégane Pizzimenti, Gloria Aguayo, Aurélie Fischer, Hanin Ayadi, Franck Mauvais-Jarvis, Jean-Pierre Riveline, Vladimir Despotovic, Guy Fagherazzi","doi":"10.1371/journal.pdig.0000679","DOIUrl":null,"url":null,"abstract":"<p><p>The pressing need to reduce undiagnosed type 2 diabetes (T2D) globally calls for innovative screening approaches. This study investigates the potential of using a voice-based algorithm to predict T2D status in adults, as the first step towards developing a non-invasive and scalable screening method. We analyzed pre-specified text recordings from 607 US participants from the Colive Voice study registered on ClinicalTrials.gov (NCT04848623). Using hybrid BYOL-S/CvT embeddings, we constructed gender-specific algorithms to predict T2D status, evaluated through cross-validation based on accuracy, specificity, sensitivity, and Area Under the Curve (AUC). The best models were stratified by key factors such as age, BMI, and hypertension, and compared to the American Diabetes Association (ADA) score for T2D risk assessment using Bland-Altman analysis. The voice-based algorithms demonstrated good predictive capacity (AUC = 75% for males, 71% for females), correctly predicting 71% of male and 66% of female T2D cases. Performance improved in females aged 60 years or older (AUC = 74%) and individuals with hypertension (AUC = 75%), with an overall agreement above 93% with the ADA risk score. Our findings suggest that voice-based algorithms could serve as a more accessible, cost-effective, and noninvasive screening tool for T2D. While these results are promising, further validation is needed, particularly for early-stage T2D cases and more diverse populations.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"3 12","pages":"e0000679"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658629/pdf/","citationCount":"0","resultStr":"{\"title\":\"A voice-based algorithm can predict type 2 diabetes status in USA adults: Findings from the Colive Voice study.\",\"authors\":\"Abir Elbéji, Mégane Pizzimenti, Gloria Aguayo, Aurélie Fischer, Hanin Ayadi, Franck Mauvais-Jarvis, Jean-Pierre Riveline, Vladimir Despotovic, Guy Fagherazzi\",\"doi\":\"10.1371/journal.pdig.0000679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The pressing need to reduce undiagnosed type 2 diabetes (T2D) globally calls for innovative screening approaches. This study investigates the potential of using a voice-based algorithm to predict T2D status in adults, as the first step towards developing a non-invasive and scalable screening method. We analyzed pre-specified text recordings from 607 US participants from the Colive Voice study registered on ClinicalTrials.gov (NCT04848623). Using hybrid BYOL-S/CvT embeddings, we constructed gender-specific algorithms to predict T2D status, evaluated through cross-validation based on accuracy, specificity, sensitivity, and Area Under the Curve (AUC). The best models were stratified by key factors such as age, BMI, and hypertension, and compared to the American Diabetes Association (ADA) score for T2D risk assessment using Bland-Altman analysis. The voice-based algorithms demonstrated good predictive capacity (AUC = 75% for males, 71% for females), correctly predicting 71% of male and 66% of female T2D cases. Performance improved in females aged 60 years or older (AUC = 74%) and individuals with hypertension (AUC = 75%), with an overall agreement above 93% with the ADA risk score. Our findings suggest that voice-based algorithms could serve as a more accessible, cost-effective, and noninvasive screening tool for T2D. While these results are promising, further validation is needed, particularly for early-stage T2D cases and more diverse populations.</p>\",\"PeriodicalId\":74465,\"journal\":{\"name\":\"PLOS digital health\",\"volume\":\"3 12\",\"pages\":\"e0000679\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658629/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLOS digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pdig.0000679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在全球范围内减少未确诊的2型糖尿病(T2D)的迫切需要需要创新的筛查方法。本研究探讨了使用基于语音的算法预测成人T2D状态的潜力,作为开发非侵入性和可扩展筛查方法的第一步。我们分析了在ClinicalTrials.gov (NCT04848623)上注册的Colive Voice研究的607名美国参与者预先指定的文本录音。使用混合BYOL-S/CvT嵌入,我们构建了基于性别的算法来预测T2D状态,并通过基于准确性、特异性、敏感性和曲线下面积(AUC)的交叉验证进行评估。根据年龄、BMI和高血压等关键因素对最佳模型进行分层,并使用Bland-Altman分析与美国糖尿病协会(ADA)的T2D风险评估评分进行比较。基于语音的算法显示出良好的预测能力(男性AUC = 75%,女性AUC = 71%),正确预测了71%的男性和66%的女性T2D病例。60岁及以上女性(AUC = 74%)和高血压患者(AUC = 75%)的表现有所改善,与ADA风险评分的总体一致性高于93%。我们的研究结果表明,基于语音的算法可以作为一种更容易获得、更具成本效益和非侵入性的T2D筛查工具。虽然这些结果很有希望,但需要进一步的验证,特别是对于早期T2D病例和更多样化的人群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A voice-based algorithm can predict type 2 diabetes status in USA adults: Findings from the Colive Voice study.

The pressing need to reduce undiagnosed type 2 diabetes (T2D) globally calls for innovative screening approaches. This study investigates the potential of using a voice-based algorithm to predict T2D status in adults, as the first step towards developing a non-invasive and scalable screening method. We analyzed pre-specified text recordings from 607 US participants from the Colive Voice study registered on ClinicalTrials.gov (NCT04848623). Using hybrid BYOL-S/CvT embeddings, we constructed gender-specific algorithms to predict T2D status, evaluated through cross-validation based on accuracy, specificity, sensitivity, and Area Under the Curve (AUC). The best models were stratified by key factors such as age, BMI, and hypertension, and compared to the American Diabetes Association (ADA) score for T2D risk assessment using Bland-Altman analysis. The voice-based algorithms demonstrated good predictive capacity (AUC = 75% for males, 71% for females), correctly predicting 71% of male and 66% of female T2D cases. Performance improved in females aged 60 years or older (AUC = 74%) and individuals with hypertension (AUC = 75%), with an overall agreement above 93% with the ADA risk score. Our findings suggest that voice-based algorithms could serve as a more accessible, cost-effective, and noninvasive screening tool for T2D. While these results are promising, further validation is needed, particularly for early-stage T2D cases and more diverse populations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing a youth-friendly internet-enabled HIV risk calculator: A collaborative approach with young key populations, living in Soweto, South Africa. Comparing imputation approaches to handle systematically missing inputs in risk calculators. Specialty-specific Evaluation of Virtual care Outcomes: A retrospective QUality and safety analysis (S-EVOQUe). Explore barriers to using the internet for health information access in African countries: A systematic review. A comparison of CXR-CAD software to radiologists in identifying COVID-19 in individuals evaluated for Sars CoV-2 infection in Malawi and Zambia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1