基于间歇无线网络通信的网络化无人水面车辆全分布式动态事件触发的编队遏制控制。

ISA transactions Pub Date : 2025-01-01 Epub Date: 2024-11-16 DOI:10.1016/j.isatra.2024.10.033
Zhen Zhang, Bing Huang, Xiaotao Zhou, Hua Peng
{"title":"基于间歇无线网络通信的网络化无人水面车辆全分布式动态事件触发的编队遏制控制。","authors":"Zhen Zhang, Bing Huang, Xiaotao Zhou, Hua Peng","doi":"10.1016/j.isatra.2024.10.033","DOIUrl":null,"url":null,"abstract":"<p><p>Favorable neighboring interactions and economical transmission costs are the foundations of formation-containment control (FCC), while the complex marine environments hamper its expansion on networked unmanned surface vehicles (USVs). In this context, this paper investigates an intermittent dynamic event-triggered control scheme for USVs experiencing communication interruptions to achieve FCC. Specifically, the control architecture consists of two synchronously working sub-layers. In the first layer, an intermittent communications-based formation tracking controller is initially developed to endow USVs with higher endurance against communication interruptions, such that the leader USVs can form a desired formation pattern while following a virtual leader. Meanwhile, a dynamic event-triggered mechanism (DETM) is incorporated into the intermittent controller to reduce the update frequency of control signals with computable minimum inter-event time (MIET). Similarly, an intermittent DETM-based controller is proposed for followers to achieve containment missions in the second layer. Moreover, the global information is unnecessary with time-varying control gains. Finally, the simulations are provided to verify the effectiveness and superiority of the proposed control scheme.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":"202-216"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully distributed dynamic event-triggered formation-containment control for networked unmanned surface vehicles with intermittent wireless network communications.\",\"authors\":\"Zhen Zhang, Bing Huang, Xiaotao Zhou, Hua Peng\",\"doi\":\"10.1016/j.isatra.2024.10.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Favorable neighboring interactions and economical transmission costs are the foundations of formation-containment control (FCC), while the complex marine environments hamper its expansion on networked unmanned surface vehicles (USVs). In this context, this paper investigates an intermittent dynamic event-triggered control scheme for USVs experiencing communication interruptions to achieve FCC. Specifically, the control architecture consists of two synchronously working sub-layers. In the first layer, an intermittent communications-based formation tracking controller is initially developed to endow USVs with higher endurance against communication interruptions, such that the leader USVs can form a desired formation pattern while following a virtual leader. Meanwhile, a dynamic event-triggered mechanism (DETM) is incorporated into the intermittent controller to reduce the update frequency of control signals with computable minimum inter-event time (MIET). Similarly, an intermittent DETM-based controller is proposed for followers to achieve containment missions in the second layer. Moreover, the global information is unnecessary with time-varying control gains. Finally, the simulations are provided to verify the effectiveness and superiority of the proposed control scheme.</p>\",\"PeriodicalId\":94059,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\" \",\"pages\":\"202-216\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.isatra.2024.10.033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2024.10.033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

良好的相邻相互作用和经济的传输成本是地层遏制控制(FCC)的基础,而复杂的海洋环境阻碍了其在网络化无人水面航行器(usv)上的扩展。在此背景下,本文研究了一种针对通信中断的usv实现FCC的间歇动态事件触发控制方案。具体来说,控制体系结构由两个同步工作的子层组成。在第一层,初步开发了基于间歇通信的编队跟踪控制器,使usv具有更高的抗通信中断能力,使领队usv能够在跟随虚拟领队的同时形成所需的编队模式。同时,在间歇控制器中引入动态事件触发机制(DETM),以可计算最小事件间时间(MIET)降低控制信号的更新频率。同样,在第二层为follower提出了一种基于间歇detm的控制器来实现遏制任务。此外,由于控制增益时变,不需要全局信息。最后通过仿真验证了所提控制方案的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fully distributed dynamic event-triggered formation-containment control for networked unmanned surface vehicles with intermittent wireless network communications.

Favorable neighboring interactions and economical transmission costs are the foundations of formation-containment control (FCC), while the complex marine environments hamper its expansion on networked unmanned surface vehicles (USVs). In this context, this paper investigates an intermittent dynamic event-triggered control scheme for USVs experiencing communication interruptions to achieve FCC. Specifically, the control architecture consists of two synchronously working sub-layers. In the first layer, an intermittent communications-based formation tracking controller is initially developed to endow USVs with higher endurance against communication interruptions, such that the leader USVs can form a desired formation pattern while following a virtual leader. Meanwhile, a dynamic event-triggered mechanism (DETM) is incorporated into the intermittent controller to reduce the update frequency of control signals with computable minimum inter-event time (MIET). Similarly, an intermittent DETM-based controller is proposed for followers to achieve containment missions in the second layer. Moreover, the global information is unnecessary with time-varying control gains. Finally, the simulations are provided to verify the effectiveness and superiority of the proposed control scheme.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decentralized control of impulsive interconnected switched positive time-delay systems under MDMDT switching. Fully distributed data-driven model-free adaptive control for consensus tracking in multi-agent systems. Event-triggered adaptive compensation control for stochastic nonlinear systems with multiple failures: An improved switching threshold strategy. A novel voltage control system based on deep neural networks for MicroGrids including communication delay as a complex and large-scale system. Improved approximation-free control for the leader-follower tracking of the multi-agent systems with disturbance and unknown nonlinearity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1