深度学习训练的高效零知识证明

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS IEEE Transactions on Information Forensics and Security Pub Date : 2024-12-20 DOI:10.1109/TIFS.2024.3520863
Haochen Sun;Tonghe Bai;Jason Li;Hongyang Zhang
{"title":"深度学习训练的高效零知识证明","authors":"Haochen Sun;Tonghe Bai;Jason Li;Hongyang Zhang","doi":"10.1109/TIFS.2024.3520863","DOIUrl":null,"url":null,"abstract":"The recent advancements in deep learning have brought about significant changes in various aspects of people’s lives. Meanwhile, these rapid developments have raised concerns about the legitimacy of the training process of deep neural networks. To protect the intellectual properties of AI developers, directly examining the training process by accessing the model parameters and training data is often prohibited for verifiers. In response to this challenge, we present zero-knowledge deep learning (zkDL), an efficient zero-knowledge proof for deep learning training. To address the long-standing challenge of verifiable computations of non-linearities in deep learning training, we introduce zkReLU, a specialized proof for the ReLU activation and its backpropagation. zkReLU turns the disadvantage of non-arithmetic relations into an advantage, leading to the creation of FAC4DNN, our specialized arithmetic circuit design for modelling neural networks. This design aggregates the proofs over different layers and training steps, without being constrained by their sequential order in the training process. With our new CUDA implementation that achieves full compatibility with the tensor structures and the aggregated proof design, zkDL enables the generation of complete and sound proofs in less than a second per batch update for an 8-layer neural network with 10M parameters and a batch size of 64, while provably ensuring the privacy of data and model parameters. To our best knowledge, we are not aware of any existing work on zero-knowledge proof of deep learning training that is scalable to million-size networks.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"914-927"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"zkDL: Efficient Zero-Knowledge Proofs of Deep Learning Training\",\"authors\":\"Haochen Sun;Tonghe Bai;Jason Li;Hongyang Zhang\",\"doi\":\"10.1109/TIFS.2024.3520863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent advancements in deep learning have brought about significant changes in various aspects of people’s lives. Meanwhile, these rapid developments have raised concerns about the legitimacy of the training process of deep neural networks. To protect the intellectual properties of AI developers, directly examining the training process by accessing the model parameters and training data is often prohibited for verifiers. In response to this challenge, we present zero-knowledge deep learning (zkDL), an efficient zero-knowledge proof for deep learning training. To address the long-standing challenge of verifiable computations of non-linearities in deep learning training, we introduce zkReLU, a specialized proof for the ReLU activation and its backpropagation. zkReLU turns the disadvantage of non-arithmetic relations into an advantage, leading to the creation of FAC4DNN, our specialized arithmetic circuit design for modelling neural networks. This design aggregates the proofs over different layers and training steps, without being constrained by their sequential order in the training process. With our new CUDA implementation that achieves full compatibility with the tensor structures and the aggregated proof design, zkDL enables the generation of complete and sound proofs in less than a second per batch update for an 8-layer neural network with 10M parameters and a batch size of 64, while provably ensuring the privacy of data and model parameters. To our best knowledge, we are not aware of any existing work on zero-knowledge proof of deep learning training that is scalable to million-size networks.\",\"PeriodicalId\":13492,\"journal\":{\"name\":\"IEEE Transactions on Information Forensics and Security\",\"volume\":\"20 \",\"pages\":\"914-927\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Forensics and Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10810453/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10810453/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

最近深度学习的进步给人们生活的各个方面带来了巨大的变化。与此同时,这些快速的发展也引起了人们对深度神经网络训练过程合法性的担忧。为了保护人工智能开发者的知识产权,通常禁止验证者通过访问模型参数和训练数据来直接检查训练过程。为了应对这一挑战,我们提出了零知识深度学习(zkDL),这是一种用于深度学习训练的高效零知识证明。为了解决深度学习训练中非线性可验证计算的长期挑战,我们引入了zkReLU,这是ReLU激活及其反向传播的专门证明。zkReLU将非算术关系的缺点转化为优势,从而创建了FAC4DNN,这是我们用于建模神经网络的专门算术电路设计。这种设计在不同的层和训练步骤上聚合证明,而不受其在训练过程中的顺序限制。我们的新CUDA实现实现了与张量结构和聚合证明设计的完全兼容,zkDL能够在每批更新不到一秒的时间内为8层神经网络生成完整和可靠的证明,具有10M参数和64批大小,同时可证明地确保数据和模型参数的隐私性。据我们所知,我们不知道有任何关于深度学习训练的零知识证明的现有工作可以扩展到百万规模的网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
zkDL: Efficient Zero-Knowledge Proofs of Deep Learning Training
The recent advancements in deep learning have brought about significant changes in various aspects of people’s lives. Meanwhile, these rapid developments have raised concerns about the legitimacy of the training process of deep neural networks. To protect the intellectual properties of AI developers, directly examining the training process by accessing the model parameters and training data is often prohibited for verifiers. In response to this challenge, we present zero-knowledge deep learning (zkDL), an efficient zero-knowledge proof for deep learning training. To address the long-standing challenge of verifiable computations of non-linearities in deep learning training, we introduce zkReLU, a specialized proof for the ReLU activation and its backpropagation. zkReLU turns the disadvantage of non-arithmetic relations into an advantage, leading to the creation of FAC4DNN, our specialized arithmetic circuit design for modelling neural networks. This design aggregates the proofs over different layers and training steps, without being constrained by their sequential order in the training process. With our new CUDA implementation that achieves full compatibility with the tensor structures and the aggregated proof design, zkDL enables the generation of complete and sound proofs in less than a second per batch update for an 8-layer neural network with 10M parameters and a batch size of 64, while provably ensuring the privacy of data and model parameters. To our best knowledge, we are not aware of any existing work on zero-knowledge proof of deep learning training that is scalable to million-size networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
期刊最新文献
SMSSE: Size-pattern Mitigation Searchable Symmetric Encryption Privacy for Free: Spy Attack in Vertical Federated Learning by Both Active and Passive Parties All Points Guided Adversarial Generator for Targeted Attack Against Deep Hashing Retrieval Anonymous and Efficient (t, n)-Threshold Ownership Transfer for Cloud EMRs Auditing Query Correlation Attack against Searchable Symmetric Encryption with Supporting for Conjunctive Queries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1