负载阿莫西林-克拉维酸钾高岭土纳米管的聚羟基丁酸/聚(ε-己内酯)基静电纺丝膜在生物医学上的应用

IF 2.9 4区 化学 Q2 POLYMER SCIENCE Polymer International Pub Date : 2024-10-01 DOI:10.1002/pi.6700
Deepak Verma, Manunya Okhawilai, Nangan Senthilkumar, Natesan Thirumalaivasan, Aran Incharoensakdi, Hiroshi Uyama
{"title":"负载阿莫西林-克拉维酸钾高岭土纳米管的聚羟基丁酸/聚(ε-己内酯)基静电纺丝膜在生物医学上的应用","authors":"Deepak Verma,&nbsp;Manunya Okhawilai,&nbsp;Nangan Senthilkumar,&nbsp;Natesan Thirumalaivasan,&nbsp;Aran Incharoensakdi,&nbsp;Hiroshi Uyama","doi":"10.1002/pi.6700","DOIUrl":null,"url":null,"abstract":"<p>Biopolymers exhibit distinct properties for biomedical applications. Different biopolymer classes are utilized for various applications, for example antibacterial properties, drug delivery, tissue engineering, tissue scaffolds etc. In the present investigation, a nano-bioengineering approach was followed to prepare polyhydroxybutyrate and polycaprolactone polymer-based drug-loaded halloysite nanotube electrospun membranes for biomedical applications. Functionalized halloysite nanotubes ((3-aminopropyl)triethoxysilane acid treated halloysite nanotubes) at different weight percentages (1, 3, 5 and 7 wt%) were loaded with a broad-spectrum antibiotic amoxicillin trihydrate-potassium clavulanate, incorporated into the electrospun membranes, and characterized by different techniques such as XRD, FTIR, SEM, TEM and TGA. Different physical and mechanical properties were evaluated, such as porosity, water uptake, water vapor transmission rate, wettability and tensile properties. The developed membranes exhibited good <i>in vitro</i> biological properties, for example antibacterial, effective cell migration and less toxicity, as confirmed by disk diffusion, MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) and cell scratch assays. A sustained drug release profile was observed from all the developed membranes. Overall results on the characterization of the developed membranes confirm the suitability of their use for different biomedical applications and as a wound dressing application. © 2024 Society of Chemical Industry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"74 1","pages":"54-65"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyhydroxybutyrate/poly(ε-caprolactone)-based electrospun membranes loaded with amoxicillin-potassium clavulanate halloysite nanotubes for biomedical applications\",\"authors\":\"Deepak Verma,&nbsp;Manunya Okhawilai,&nbsp;Nangan Senthilkumar,&nbsp;Natesan Thirumalaivasan,&nbsp;Aran Incharoensakdi,&nbsp;Hiroshi Uyama\",\"doi\":\"10.1002/pi.6700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biopolymers exhibit distinct properties for biomedical applications. Different biopolymer classes are utilized for various applications, for example antibacterial properties, drug delivery, tissue engineering, tissue scaffolds etc. In the present investigation, a nano-bioengineering approach was followed to prepare polyhydroxybutyrate and polycaprolactone polymer-based drug-loaded halloysite nanotube electrospun membranes for biomedical applications. Functionalized halloysite nanotubes ((3-aminopropyl)triethoxysilane acid treated halloysite nanotubes) at different weight percentages (1, 3, 5 and 7 wt%) were loaded with a broad-spectrum antibiotic amoxicillin trihydrate-potassium clavulanate, incorporated into the electrospun membranes, and characterized by different techniques such as XRD, FTIR, SEM, TEM and TGA. Different physical and mechanical properties were evaluated, such as porosity, water uptake, water vapor transmission rate, wettability and tensile properties. The developed membranes exhibited good <i>in vitro</i> biological properties, for example antibacterial, effective cell migration and less toxicity, as confirmed by disk diffusion, MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) and cell scratch assays. A sustained drug release profile was observed from all the developed membranes. Overall results on the characterization of the developed membranes confirm the suitability of their use for different biomedical applications and as a wound dressing application. © 2024 Society of Chemical Industry.</p>\",\"PeriodicalId\":20404,\"journal\":{\"name\":\"Polymer International\",\"volume\":\"74 1\",\"pages\":\"54-65\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer International\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pi.6700\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer International","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pi.6700","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

生物聚合物在生物医学应用中表现出独特的特性。不同的生物聚合物类别被用于各种应用,例如抗菌性能、药物输送、组织工程、组织支架等。本研究采用纳米生物工程方法制备了聚羟基丁酸酯和聚己内酯聚合物基载药高土纳米管静电纺丝膜,用于生物医学应用。用广谱抗生素三水合阿莫西林-克拉维酸钾负载不同重量百分比(1、3、5、7 wt%)的功能化高岭土纳米管((3-氨基丙基)三乙氧基硅烷酸处理的高岭土纳米管),并将其掺入电纺丝膜中,采用XRD、FTIR、SEM、TEM和TGA等不同技术对其进行表征。研究了不同的物理力学性能,如孔隙率、吸水率、水蒸气透过率、润湿性和拉伸性能。通过圆盘扩散、MTT(3-(4,5-二甲基噻唑-2)-2,5-二苯基溴化四唑)和细胞划痕实验证实,所制备的膜具有良好的体外生物学性能,如抗菌、有效的细胞迁移和低毒性。从所有发育的膜上观察到药物的持续释放。所开发膜的特性的总体结果证实了它们在不同生物医学应用和伤口敷料应用中的适用性。©2024化学工业学会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polyhydroxybutyrate/poly(ε-caprolactone)-based electrospun membranes loaded with amoxicillin-potassium clavulanate halloysite nanotubes for biomedical applications

Biopolymers exhibit distinct properties for biomedical applications. Different biopolymer classes are utilized for various applications, for example antibacterial properties, drug delivery, tissue engineering, tissue scaffolds etc. In the present investigation, a nano-bioengineering approach was followed to prepare polyhydroxybutyrate and polycaprolactone polymer-based drug-loaded halloysite nanotube electrospun membranes for biomedical applications. Functionalized halloysite nanotubes ((3-aminopropyl)triethoxysilane acid treated halloysite nanotubes) at different weight percentages (1, 3, 5 and 7 wt%) were loaded with a broad-spectrum antibiotic amoxicillin trihydrate-potassium clavulanate, incorporated into the electrospun membranes, and characterized by different techniques such as XRD, FTIR, SEM, TEM and TGA. Different physical and mechanical properties were evaluated, such as porosity, water uptake, water vapor transmission rate, wettability and tensile properties. The developed membranes exhibited good in vitro biological properties, for example antibacterial, effective cell migration and less toxicity, as confirmed by disk diffusion, MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) and cell scratch assays. A sustained drug release profile was observed from all the developed membranes. Overall results on the characterization of the developed membranes confirm the suitability of their use for different biomedical applications and as a wound dressing application. © 2024 Society of Chemical Industry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer International
Polymer International 化学-高分子科学
CiteScore
7.10
自引率
3.10%
发文量
135
审稿时长
4.3 months
期刊介绍: Polymer International (PI) publishes the most significant advances in macromolecular science and technology. PI especially welcomes research papers that address applications that fall within the broad headings Energy and Electronics, Biomedical Studies, and Water, Environment and Sustainability. The Journal’s editors have identified these as the major challenges facing polymer scientists worldwide. The Journal also publishes invited Review, Mini-review and Perspective papers that address these challenges and others that may be of growing or future relevance to polymer scientists and engineers.
期刊最新文献
Issue Information Fabrication of polylactide composites with silver nanoparticles by sputtering deposition and their antimicrobial and antiviral applications Anti-tumoural activity of 3D printed fluorohydroxyapatite–polylactic acid scaffolds combined with graphene oxide and doxorubicin Issue Information Cover Image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1