IF 8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Optical Materials Pub Date : 2024-11-28 DOI:10.1002/adom.202401839
Qiuyu Shang, Xinyi Deng, Jiepeng Song, Yin Liang, Heng Lu, Yiyang Gong, Shulin Chen, Peng Gao, Xiaowei Zhan, Xinfeng Liu, Qing Zhang
{"title":"Spin-Orbit Coupled Trapped Exciton–Polariton Condensates in Perovskite Microcavity","authors":"Qiuyu Shang,&nbsp;Xinyi Deng,&nbsp;Jiepeng Song,&nbsp;Yin Liang,&nbsp;Heng Lu,&nbsp;Yiyang Gong,&nbsp;Shulin Chen,&nbsp;Peng Gao,&nbsp;Xiaowei Zhan,&nbsp;Xinfeng Liu,&nbsp;Qing Zhang","doi":"10.1002/adom.202401839","DOIUrl":null,"url":null,"abstract":"<p>Lead halide perovskites exhibit superior properties compared to classical III–V semiconductor quantum wells for room-temperature polaritonic applications, particularly owing to the significant crystalline anisotropy. This anisotropy results in a sizeable split in condensate energy, which can profoundly influence polariton interactions and spin relaxation pathways. Besides, trapped exciton-polariton (TEP) exhibits a quantized energy landscape, which is essential for modulating polaritonic logical circuits. Herein, spin-orbit coupled TEP lasing is demonstrated in birefringent perovskite. Cascade condensate processes between orthogonally polarized polariton branches happen considering the dominance of reservoir exciton–polariton or polariton–polariton scattering within each stage. Such condensation adequately is verified via the input-output “S” curve, the narrowed linewidth, the energy blueshift, and the real space spatial coherence of the orthogonally polarized modes. This trapped anisotropic condensate holds great promise for room-temperature polaritonic and spintronics.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 36","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202401839","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

与经典的 III-V 族半导体量子阱相比,卤化铅包晶石在室温极化应用方面表现出更优越的特性,这主要归功于其显著的晶体各向异性。这种各向异性导致了凝聚态能量的巨大差异,从而对极化子相互作用和自旋弛豫途径产生了深远的影响。此外,受困激子-极化子(TEP)表现出量子化的能量景观,这对于调制极化子逻辑电路至关重要。在此,我们在双折射过氧化物中演示了自旋轨道耦合 TEP 激光。考虑到储层激子-极化子或极化子-极化子散射在每个阶段的主导地位,正交极化的极化子分支之间发生了级联凝聚过程。输入-输出 "S "曲线、缩小的线宽、能量蓝移以及正交偏振模的实际空间相干性都充分验证了这种凝聚。这种受困的各向异性凝聚态为室温极化和自旋电子学带来了巨大的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spin-Orbit Coupled Trapped Exciton–Polariton Condensates in Perovskite Microcavity

Lead halide perovskites exhibit superior properties compared to classical III–V semiconductor quantum wells for room-temperature polaritonic applications, particularly owing to the significant crystalline anisotropy. This anisotropy results in a sizeable split in condensate energy, which can profoundly influence polariton interactions and spin relaxation pathways. Besides, trapped exciton-polariton (TEP) exhibits a quantized energy landscape, which is essential for modulating polaritonic logical circuits. Herein, spin-orbit coupled TEP lasing is demonstrated in birefringent perovskite. Cascade condensate processes between orthogonally polarized polariton branches happen considering the dominance of reservoir exciton–polariton or polariton–polariton scattering within each stage. Such condensation adequately is verified via the input-output “S” curve, the narrowed linewidth, the energy blueshift, and the real space spatial coherence of the orthogonally polarized modes. This trapped anisotropic condensate holds great promise for room-temperature polaritonic and spintronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
期刊最新文献
Er:LiNbO3 Quantum Memory Platform Optimized with Dynamic Defect Annealing (Advanced Optical Materials 36/2024) Nanometric Ge Films for Ultrafast Modulation of THz Waves with Flexible Metasurface (Advanced Optical Materials 36/2024) Highly Refractive Transparent Half-Heuslers for Near Infrared Optics and Their Material Design (Advanced Optical Materials 36/2024) Masthead: (Advanced Optical Materials 36/2024) Retina-Like Neuromorphic Visual Sensor for Sensing Broad-Spectrum Ultraviolet Light (Advanced Optical Materials 35/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1