具有未知依赖结构的异构网络分析

IF 0.8 3区 数学 Q2 MATHEMATICS Acta Mathematica Sinica-English Series Pub Date : 2024-12-15 DOI:10.1007/s10114-024-4164-0
Fang Mei Hou, Jia Xin Liu, Shao Gao Lü, Hua Zhen Lin
{"title":"具有未知依赖结构的异构网络分析","authors":"Fang Mei Hou,&nbsp;Jia Xin Liu,&nbsp;Shao Gao Lü,&nbsp;Hua Zhen Lin","doi":"10.1007/s10114-024-4164-0","DOIUrl":null,"url":null,"abstract":"<div><p>In multiple heterogeneous networks, developing a model that considers both individual and shared structures is crucial for improving estimation efficiency and interpretability. In this paper, we introduce a semi-parametric individual network autoregressive model. We allow autoregression and regression coefficients to vary across networks with subgroup structure, and integrate both covariates and node relationships into network dependence using a single-index structure with unknown links. To estimate all individual and commonly shared parameters and functions, we introduce a novel penalized semiparametric approach based on the generalized method of moments. Theoretically, our proposed semiparametric estimator for heterogeneous networks exhibits estimation and selection consistency under regular conditions. Numerical experiments are conducted to illustrate the effectiveness of the proposed estimator. The proposed method is applied to analyze patient distribution in hospitals to further demonstrate its utility.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"40 12","pages":"2953 - 2983"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Heterogeneous Networks with Unknown Dependence Structure\",\"authors\":\"Fang Mei Hou,&nbsp;Jia Xin Liu,&nbsp;Shao Gao Lü,&nbsp;Hua Zhen Lin\",\"doi\":\"10.1007/s10114-024-4164-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In multiple heterogeneous networks, developing a model that considers both individual and shared structures is crucial for improving estimation efficiency and interpretability. In this paper, we introduce a semi-parametric individual network autoregressive model. We allow autoregression and regression coefficients to vary across networks with subgroup structure, and integrate both covariates and node relationships into network dependence using a single-index structure with unknown links. To estimate all individual and commonly shared parameters and functions, we introduce a novel penalized semiparametric approach based on the generalized method of moments. Theoretically, our proposed semiparametric estimator for heterogeneous networks exhibits estimation and selection consistency under regular conditions. Numerical experiments are conducted to illustrate the effectiveness of the proposed estimator. The proposed method is applied to analyze patient distribution in hospitals to further demonstrate its utility.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"40 12\",\"pages\":\"2953 - 2983\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-024-4164-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-4164-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在多异构网络中,开发一个同时考虑个体和共享结构的模型对于提高估计效率和可解释性至关重要。本文引入了一种半参数个体网络自回归模型。我们允许自回归和回归系数在具有子群结构的网络中变化,并使用具有未知链接的单索引结构将协变量和节点关系集成到网络依赖中。为了估计所有单独的和共有的参数和函数,我们引入了一种基于广义矩量方法的惩罚半参数方法。理论上,我们提出的异构网络半参数估计在规则条件下具有估计一致性和选择一致性。数值实验验证了该估计方法的有效性。将该方法应用于医院患者分布分析,进一步验证了该方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of Heterogeneous Networks with Unknown Dependence Structure

In multiple heterogeneous networks, developing a model that considers both individual and shared structures is crucial for improving estimation efficiency and interpretability. In this paper, we introduce a semi-parametric individual network autoregressive model. We allow autoregression and regression coefficients to vary across networks with subgroup structure, and integrate both covariates and node relationships into network dependence using a single-index structure with unknown links. To estimate all individual and commonly shared parameters and functions, we introduce a novel penalized semiparametric approach based on the generalized method of moments. Theoretically, our proposed semiparametric estimator for heterogeneous networks exhibits estimation and selection consistency under regular conditions. Numerical experiments are conducted to illustrate the effectiveness of the proposed estimator. The proposed method is applied to analyze patient distribution in hospitals to further demonstrate its utility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
期刊最新文献
A Boson-fermion Realization of Highest Weight Modules over \(\mathfrak{g}\widetilde{\mathfrak{l}_{M/N}}(\theta)\) Approximation by Convolution Translation Networks on Conic Domains A Class of Robust Independence Tests Based on Weighted Integrals of Empirical Characteristic Functions Analysis of Heterogeneous Networks with Unknown Dependence Structure The Life Span of Classical Solutions to Nonlinear Wave Equations with Weighted Terms in Three Space Dimensions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1