用g方法解决ALTA-1L试验中的治疗切换:探索模型规范的影响。

IF 3.9 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES BMC Medical Research Methodology Pub Date : 2024-12-20 DOI:10.1186/s12874-024-02437-6
Amani Al Tawil, Sean McGrath, Robin Ristl, Ulrich Mansmann
{"title":"用g方法解决ALTA-1L试验中的治疗切换:探索模型规范的影响。","authors":"Amani Al Tawil, Sean McGrath, Robin Ristl, Ulrich Mansmann","doi":"10.1186/s12874-024-02437-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Treatment switching in randomized clinical trials introduces challenges in performing causal inference. Intention To Treat (ITT) analyses often fail to fully capture the causal effect of treatment in the presence of treatment switching. Consequently, decision makers may instead be interested in causal effects of hypothetical treatment strategies that do not allow for treatment switching. For example, the phase 3 ALTA-1L trial showed that brigatinib may have improved Overall Survival (OS) compared to crizotinib if treatment switching had not occurred. Their sensitivity analysis using Inverse Probability of Censoring Weights (IPCW), reported a Hazard Ratio (HR) of 0.50 (95% CI, 0.28-0.87), while their initial ITT analysis estimated an HR of 0.81 (0.53-1.22).</p><p><strong>Methods: </strong>We used a directed acyclic graph to depict the clinical setting of the ALTA-1L trial in the presence of treatment switching, illustrating the concept of treatment-confounder feedback and highlighting the need for g-methods. In a re-analysis of the ALTA-1L trial data, we used IPCW and the parametric g-formula to adjust for baseline and time-varying covariates to estimate the effect of two hypothetical treatment strategies on OS: \"always treat with brigatinib\" versus \"always treat with crizotinib\". We conducted various sensitivity analyses using different model specifications and weight truncation approaches.</p><p><strong>Results: </strong>Applying the IPCW approach in a series of sensitivity analyses yielded Cumulative HRs (cHRs) ranging between 0.38 (0.12, 0.98) and 0.73 (0.45,1.22) and Risk Ratios (RRs) ranging between 0.52 (0.32, 0.98) and 0.79 (0.54,1.17). Applying the parametric g-formula resulted in cHRs ranging between 0.61 (0.38,0.91) and 0.72 (0.43,1.07) and RRs ranging between 0.71 (0.48,0.94) and 0.79 (0.54,1.05).</p><p><strong>Conclusion: </strong>Our results consistently indicated that our estimated ITT effect estimate (cHR: 0.82 (0.51,1.22) may have underestimated brigatinib's benefit by around 10-45 percentage points (using IPCW) and 10-20 percentage points (using the parametric g-formula) across a wide range of model choices. Our analyses underscore the importance of performing sensitivity analyses, as the result from a single analysis could potentially stand as an outlier in a whole range of sensitivity analyses.</p><p><strong>Trial registration: </strong>Clinicaltrials.gov Identifier: NCT02737501 on April 14, 2016.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"24 1","pages":"314"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11660711/pdf/","citationCount":"0","resultStr":"{\"title\":\"Addressing treatment switching in the ALTA-1L trial with g-methods: exploring the impact of model specification.\",\"authors\":\"Amani Al Tawil, Sean McGrath, Robin Ristl, Ulrich Mansmann\",\"doi\":\"10.1186/s12874-024-02437-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Treatment switching in randomized clinical trials introduces challenges in performing causal inference. Intention To Treat (ITT) analyses often fail to fully capture the causal effect of treatment in the presence of treatment switching. Consequently, decision makers may instead be interested in causal effects of hypothetical treatment strategies that do not allow for treatment switching. For example, the phase 3 ALTA-1L trial showed that brigatinib may have improved Overall Survival (OS) compared to crizotinib if treatment switching had not occurred. Their sensitivity analysis using Inverse Probability of Censoring Weights (IPCW), reported a Hazard Ratio (HR) of 0.50 (95% CI, 0.28-0.87), while their initial ITT analysis estimated an HR of 0.81 (0.53-1.22).</p><p><strong>Methods: </strong>We used a directed acyclic graph to depict the clinical setting of the ALTA-1L trial in the presence of treatment switching, illustrating the concept of treatment-confounder feedback and highlighting the need for g-methods. In a re-analysis of the ALTA-1L trial data, we used IPCW and the parametric g-formula to adjust for baseline and time-varying covariates to estimate the effect of two hypothetical treatment strategies on OS: \\\"always treat with brigatinib\\\" versus \\\"always treat with crizotinib\\\". We conducted various sensitivity analyses using different model specifications and weight truncation approaches.</p><p><strong>Results: </strong>Applying the IPCW approach in a series of sensitivity analyses yielded Cumulative HRs (cHRs) ranging between 0.38 (0.12, 0.98) and 0.73 (0.45,1.22) and Risk Ratios (RRs) ranging between 0.52 (0.32, 0.98) and 0.79 (0.54,1.17). Applying the parametric g-formula resulted in cHRs ranging between 0.61 (0.38,0.91) and 0.72 (0.43,1.07) and RRs ranging between 0.71 (0.48,0.94) and 0.79 (0.54,1.05).</p><p><strong>Conclusion: </strong>Our results consistently indicated that our estimated ITT effect estimate (cHR: 0.82 (0.51,1.22) may have underestimated brigatinib's benefit by around 10-45 percentage points (using IPCW) and 10-20 percentage points (using the parametric g-formula) across a wide range of model choices. Our analyses underscore the importance of performing sensitivity analyses, as the result from a single analysis could potentially stand as an outlier in a whole range of sensitivity analyses.</p><p><strong>Trial registration: </strong>Clinicaltrials.gov Identifier: NCT02737501 on April 14, 2016.</p>\",\"PeriodicalId\":9114,\"journal\":{\"name\":\"BMC Medical Research Methodology\",\"volume\":\"24 1\",\"pages\":\"314\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11660711/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Research Methodology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12874-024-02437-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Research Methodology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12874-024-02437-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

背景:随机临床试验中的治疗转换给因果推理带来了挑战。治疗意图(ITT)分析往往不能完全捕捉治疗的因果效应在治疗转换的存在。因此,决策者可能会对不允许治疗转换的假设治疗策略的因果效应感兴趣。例如,3期ALTA-1L试验表明,如果没有发生治疗转换,布加替尼可能比克唑替尼提高了总生存期(OS)。他们使用审查权重逆概率(IPCW)进行敏感性分析,报告的风险比(HR)为0.50 (95% CI, 0.28-0.87),而他们最初的ITT分析估计的风险比为0.81(0.53-1.22)。方法:我们使用有向无环图来描述存在治疗切换的ALTA-1L试验的临床环境,说明了治疗混杂因素反馈的概念,并强调了g方法的必要性。在对ALTA-1L试验数据的重新分析中,我们使用IPCW和参数g公式来调整基线和时变协变量,以估计两种假设治疗策略对OS的影响:“总是用布加替尼治疗”和“总是用克唑替尼治疗”。我们使用不同的模型规格和权重截断方法进行了各种敏感性分析。结果:应用IPCW方法进行一系列敏感性分析,累积hr (cHRs)范围为0.38(0.12,0.98)至0.73(0.45,1.22),风险比(RRs)范围为0.52(0.32,0.98)至0.79(0.54,1.17)。应用参数g公式,cHRs范围为0.61(0.38,0.91)和0.72 (0.43,1.07),RRs范围为0.71(0.48,0.94)和0.79(0.54,1.05)。结论:我们的结果一致表明,我们估计的ITT效应估计(cHR: 0.82(0.51,1.22))可能低估了布加替尼的益处,在广泛的模型选择范围内,低估了约10-45个百分点(使用IPCW)和10-20个百分点(使用参数g公式)。我们的分析强调了进行敏感性分析的重要性,因为单个分析的结果可能会成为整个敏感性分析范围的异常值。试验注册:Clinicaltrials.gov标识符:NCT02737501,于2016年4月14日注册。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Addressing treatment switching in the ALTA-1L trial with g-methods: exploring the impact of model specification.

Background: Treatment switching in randomized clinical trials introduces challenges in performing causal inference. Intention To Treat (ITT) analyses often fail to fully capture the causal effect of treatment in the presence of treatment switching. Consequently, decision makers may instead be interested in causal effects of hypothetical treatment strategies that do not allow for treatment switching. For example, the phase 3 ALTA-1L trial showed that brigatinib may have improved Overall Survival (OS) compared to crizotinib if treatment switching had not occurred. Their sensitivity analysis using Inverse Probability of Censoring Weights (IPCW), reported a Hazard Ratio (HR) of 0.50 (95% CI, 0.28-0.87), while their initial ITT analysis estimated an HR of 0.81 (0.53-1.22).

Methods: We used a directed acyclic graph to depict the clinical setting of the ALTA-1L trial in the presence of treatment switching, illustrating the concept of treatment-confounder feedback and highlighting the need for g-methods. In a re-analysis of the ALTA-1L trial data, we used IPCW and the parametric g-formula to adjust for baseline and time-varying covariates to estimate the effect of two hypothetical treatment strategies on OS: "always treat with brigatinib" versus "always treat with crizotinib". We conducted various sensitivity analyses using different model specifications and weight truncation approaches.

Results: Applying the IPCW approach in a series of sensitivity analyses yielded Cumulative HRs (cHRs) ranging between 0.38 (0.12, 0.98) and 0.73 (0.45,1.22) and Risk Ratios (RRs) ranging between 0.52 (0.32, 0.98) and 0.79 (0.54,1.17). Applying the parametric g-formula resulted in cHRs ranging between 0.61 (0.38,0.91) and 0.72 (0.43,1.07) and RRs ranging between 0.71 (0.48,0.94) and 0.79 (0.54,1.05).

Conclusion: Our results consistently indicated that our estimated ITT effect estimate (cHR: 0.82 (0.51,1.22) may have underestimated brigatinib's benefit by around 10-45 percentage points (using IPCW) and 10-20 percentage points (using the parametric g-formula) across a wide range of model choices. Our analyses underscore the importance of performing sensitivity analyses, as the result from a single analysis could potentially stand as an outlier in a whole range of sensitivity analyses.

Trial registration: Clinicaltrials.gov Identifier: NCT02737501 on April 14, 2016.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Medical Research Methodology
BMC Medical Research Methodology 医学-卫生保健
CiteScore
6.50
自引率
2.50%
发文量
298
审稿时长
3-8 weeks
期刊介绍: BMC Medical Research Methodology is an open access journal publishing original peer-reviewed research articles in methodological approaches to healthcare research. Articles on the methodology of epidemiological research, clinical trials and meta-analysis/systematic review are particularly encouraged, as are empirical studies of the associations between choice of methodology and study outcomes. BMC Medical Research Methodology does not aim to publish articles describing scientific methods or techniques: these should be directed to the BMC journal covering the relevant biomedical subject area.
期刊最新文献
A generative model for evaluating missing data methods in large epidemiological cohorts. Discrepancies in safety reporting for chronic back pain clinical trials: an observational study from ClinicalTrials.gov and publications. Multiple states clustering analysis (MSCA), an unsupervised approach to multiple time-to-event electronic health records applied to multimorbidity associated with myocardial infarction. Matching plus regression adjustment for the estimation of the average treatment effect on survival outcomes: a case study with mosunetuzumab in relapsed/refractory follicular lymphoma. Protocol publication rate and comparison between article, registry and protocol in RCTs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1