Jiuyu Liu, Gregory A Phelps, Christine M Dunn, Patricia A Murphy, Laura A Wilt, Victoria Loudon, Robin B Lee, Dinesh Fernando, Lei Yang, Kristina N Tran, Brennen T Troyer, Andres Obregon-Henao, Richard E Lee
{"title":"开发四环素类似物,提高水稳定性治疗分枝杆菌感染。","authors":"Jiuyu Liu, Gregory A Phelps, Christine M Dunn, Patricia A Murphy, Laura A Wilt, Victoria Loudon, Robin B Lee, Dinesh Fernando, Lei Yang, Kristina N Tran, Brennen T Troyer, Andres Obregon-Henao, Richard E Lee","doi":"10.1016/j.tube.2024.102592","DOIUrl":null,"url":null,"abstract":"<p><p>Tetracycline analogs from the minocycline family have recently shown promise for the treatment of non-tuberculous mycobacterial infections. However, current tetracycline and minocycline therapeutics can be limited by tolerability, stability, or inactivation by TetX. In this study, a series of novel 9-heteroaryl substituted minocycline analogs were designed and synthesized, which resulted in analogs with good in vitro activity against Mycobacterium tuberculosis and Mycobacterium abscessus, stability in water for more than 7 days, avoidance of TetX inactivation in M. abscessus, and a lack of cytotoxicity in HepG2 mammalian cells. In vivo efficacy was confirmed for the tetracycline analogs in an acute model of GM-CSF KO mice infected with M. abscessus, displaying superior efficacy to standard-of-care antibiotic clarithromycin. Molecular modeling and potentiation assays demonstrate avoidance of MabTetX, and the structure-activity relationships of the series are discussed herein for M. tuberculosis and M. abscessus.</p>","PeriodicalId":23383,"journal":{"name":"Tuberculosis","volume":"150 ","pages":"102592"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of tetracycline analogues with increased aqueous stability for the treatment of mycobacterial infections.\",\"authors\":\"Jiuyu Liu, Gregory A Phelps, Christine M Dunn, Patricia A Murphy, Laura A Wilt, Victoria Loudon, Robin B Lee, Dinesh Fernando, Lei Yang, Kristina N Tran, Brennen T Troyer, Andres Obregon-Henao, Richard E Lee\",\"doi\":\"10.1016/j.tube.2024.102592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tetracycline analogs from the minocycline family have recently shown promise for the treatment of non-tuberculous mycobacterial infections. However, current tetracycline and minocycline therapeutics can be limited by tolerability, stability, or inactivation by TetX. In this study, a series of novel 9-heteroaryl substituted minocycline analogs were designed and synthesized, which resulted in analogs with good in vitro activity against Mycobacterium tuberculosis and Mycobacterium abscessus, stability in water for more than 7 days, avoidance of TetX inactivation in M. abscessus, and a lack of cytotoxicity in HepG2 mammalian cells. In vivo efficacy was confirmed for the tetracycline analogs in an acute model of GM-CSF KO mice infected with M. abscessus, displaying superior efficacy to standard-of-care antibiotic clarithromycin. Molecular modeling and potentiation assays demonstrate avoidance of MabTetX, and the structure-activity relationships of the series are discussed herein for M. tuberculosis and M. abscessus.</p>\",\"PeriodicalId\":23383,\"journal\":{\"name\":\"Tuberculosis\",\"volume\":\"150 \",\"pages\":\"102592\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tuberculosis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tube.2024.102592\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tuberculosis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tube.2024.102592","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Development of tetracycline analogues with increased aqueous stability for the treatment of mycobacterial infections.
Tetracycline analogs from the minocycline family have recently shown promise for the treatment of non-tuberculous mycobacterial infections. However, current tetracycline and minocycline therapeutics can be limited by tolerability, stability, or inactivation by TetX. In this study, a series of novel 9-heteroaryl substituted minocycline analogs were designed and synthesized, which resulted in analogs with good in vitro activity against Mycobacterium tuberculosis and Mycobacterium abscessus, stability in water for more than 7 days, avoidance of TetX inactivation in M. abscessus, and a lack of cytotoxicity in HepG2 mammalian cells. In vivo efficacy was confirmed for the tetracycline analogs in an acute model of GM-CSF KO mice infected with M. abscessus, displaying superior efficacy to standard-of-care antibiotic clarithromycin. Molecular modeling and potentiation assays demonstrate avoidance of MabTetX, and the structure-activity relationships of the series are discussed herein for M. tuberculosis and M. abscessus.
期刊介绍:
Tuberculosis is a speciality journal focusing on basic experimental research on tuberculosis, notably on bacteriological, immunological and pathogenesis aspects of the disease. The journal publishes original research and reviews on the host response and immunology of tuberculosis and the molecular biology, genetics and physiology of the organism, however discourages submissions with a meta-analytical focus (for example, articles based on searches of published articles in public electronic databases, especially where there is lack of evidence of the personal involvement of authors in the generation of such material). We do not publish Clinical Case-Studies.
Areas on which submissions are welcomed include:
-Clinical TrialsDiagnostics-
Antimicrobial resistance-
Immunology-
Leprosy-
Microbiology, including microbial physiology-
Molecular epidemiology-
Non-tuberculous Mycobacteria-
Pathogenesis-
Pathology-
Vaccine development.
This Journal does not accept case-reports.
The resurgence of interest in tuberculosis has accelerated the pace of relevant research and Tuberculosis has grown with it, as the only journal dedicated to experimental biomedical research in tuberculosis.